MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.36: Communication Systems Engineering

Lecture 3: Measuring Information and Entropy

February 10, 2009

Eytan Modiano

Information content of a random variable (how much information is in the data?)

- Random variable X
- Outcome of a random experiment
- Discrete R.V. takes on values from a finite set of possible outcomes

PMF: $P(X=y)=P_{x}(y)$

- How much information is contained in the event $X=y$?
- Will the sun rise today?

Revealing the outcome of this experiment provides no information

- Will the Celtics win the NBA championship?

It's possible - but not certain
Revealing the answer to this question certainly has value - l.e., contains information

- Events whose outcome is certain contain less information than even whose outcome is in doubt

Measure of Information

- $I\left(x_{i}\right)=$ Amount of information revealed by an outcome $X=x_{i}$
- Desirable properties of I(x):

1. If $P(x)=1$ or $P(x)=0$, then $I(x)=0$
2. If $0<P(x)<1$, then $I(x)>0$
3. If $P(x)<P(y)$, then $I(x)>I(y)$
4. If x and y are independent events then $I(x, y)=I(x)+I(y)$

- Above is satisfied by: $1(x)=\log _{2}(1 / P(x))$
- Base of Log is not critical
- Base $2 \Rightarrow$ information measured in bits

Entropy

- A measure of the information content of a random variable
- $X \in\left\{x_{1}, \ldots, x_{m}\right\}$
- $H(X)=E[1(X)]=\Sigma P\left(x_{i}\right) \log _{2}\left(1 / P\left(x_{i}\right)\right)$
- Example: Binary experiment
- $X=x_{1}$ with probability p
- $X=x_{2}$ with probability (1-p)
$-\quad H(X)=\operatorname{pLog}_{2}(1 / p)+(1-p) \log _{2}(1 /(1-p))=H_{b}(p)$
- $H(X)$ is maximized with $p=1 / 2, H_{b}(1 / 2)=1$

Not surprising that the result of a binary experiment can be conveyed using one bit

Simple bounds on entropy

- Theorem: Given a random variable with M possible values
$-\quad 0 \leq H(X) \leq \log _{2}(M)$
A) $H(X)=0$ if and only if $P\left(x_{i}\right)=1$ for some i
B) $H(X)=\log _{2}(M)$ if and only if $P\left(x_{i}\right)=1 / M$ for all i
- Proof of A is obvious
- Proof of B requires the Log Inequality:
- if $x>0$ then $\ln (x) \leq x-1$
- Equality if $x=1$

Proof, continued

Consider the $\operatorname{sum} \sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{P}_{1} \log \left(\frac{1}{\mathrm{MP}_{\mathrm{i}}}\right)=\frac{1}{\ln (2)} \sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{P}_{1} \operatorname{Ln}\left(\frac{1}{\mathrm{MP}_{1}}\right)$, by log inequality:
$\leq \frac{1}{\ln (2)} \sum_{i=1}^{\mathrm{M}} \mathrm{P}_{1}\left(\frac{1}{\mathrm{MP}_{1}}-1\right)=\frac{1}{\ln (2)} \sum_{\mathrm{i}=1}^{\mathrm{M}}\left(\frac{1}{\mathrm{M}}-\mathrm{P}_{\mathrm{i}}\right)=0$, equality when $\mathrm{P}_{1}=\frac{1}{M}$
Writing this in another way:
$\sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{P}_{1} \log \left(\frac{1}{\mathrm{MP}_{1}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{P}_{\mathrm{i}} \log \left(\frac{1}{\mathrm{P}_{1}}\right)+\sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{P}_{1} \log \left(\frac{1}{\mathrm{M}}\right) \leq 0$, equality when $\mathrm{P}_{1}=\frac{1}{M}$
That is, $\sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{P}_{1} \log \left(\frac{1}{\mathrm{P}_{1}}\right) \leq \sum_{\mathrm{i}=1}^{\mathrm{M}} \mathrm{P}_{\mathrm{i}} \log (M)=\log (M)$

Joint Entropy

$$
\text { Joint entropy: } \quad H(X, Y)=\sum_{x, y} p(x, y) \log \left(\frac{1}{p(x, y)}\right)
$$

Conditional entropy: $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=$ uncertainty in X given Y

$$
\begin{aligned}
& H(X \mid Y=y)=\sum_{x} p(x \mid Y=y) \log \left(\frac{1}{p(x \mid Y=y)}\right) \\
& H(X \mid Y)=E[H(X \mid Y=y)]=\sum_{\mathrm{y}} \mathrm{p}(\mathrm{Y}=\mathrm{y}) H(X \mid Y=y) \\
& H(X \mid Y)=\sum_{x, y} p(x, y) \log \left(\frac{1}{p(x \mid Y=y)}\right)
\end{aligned}
$$

In General : X_{1}, \ldots, X_{n} random variables

$$
H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\sum_{x_{1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right) \log \left(\frac{1}{p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)}\right.
$$

Rules for entropy

1. Chain rule:

$$
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{2}, X_{1}\right)+\ldots+H\left(X_{n} \mid X_{n-1} \ldots X_{1}\right)
$$

2. $H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$
3. If X_{1}, \ldots, X_{n} are independent then:

$$
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{n}\right)
$$

If they are also identically distributed (i.i.d) then:

$$
H\left(X_{1}, \ldots, X_{n}\right)=n H\left(X_{1}\right)
$$

4. $H\left(X_{1}, \ldots, X_{n}\right) \leq H\left(X_{1}\right)+H\left(X_{2}\right)+\ldots+H\left(X_{n}\right)$ (with equality iff independent)

Proof: use chain rule and notice that $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})<\mathrm{H}(\mathrm{X})$ entropy is not increased by additional information

Mutual Information

- X, Y random variables
- Definition: $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}(\mathrm{Y})-\mathrm{H}(\mathrm{Y} \mid \mathrm{X})$
- Notice that $H(Y \mid X)=H(X, Y)-H(X) \Rightarrow I(X ; Y)=H(X)+H(Y)-H(X, Y)$
- $I(X ; Y)=I(Y ; X)=H(X)-H(X \mid Y)$
- Note: $I(X, Y) \geq 0$ (equality iff independent)
- Because $\mathbf{H}(\mathrm{Y}) \geq \mathbf{H}(\mathrm{Y} \mid X)$

