MIT OpenCourseWare
http://ocw.mit.edu

16.36 Communication Systems Engineering

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Aeronautics and Astronautics

16.36: Comm. Sys. Engineering

Problem Set No. 8

Problem 1

Show that the final parity check in a horizontal and vertical parity check code, if taken as the modulo- 2 sum of all the data bits, is equal to the modulo 2 sum of the horizontal parity checks and also equal to the modulo 2 sum of the vertical parity checks.

Problem 2

Consider the parity check code with three data bits and four parity checks. Suppose that three of the code words are 1000111,0101011 , and 0011101 . Find the rule for generating each of the parity checks and find the set of all eight code words. What is the minimum distance of this code?

Problem 3:

$A(7,4)$ cyclic code has generator polynomial $\mathrm{p}^{3}+\mathrm{p}+1$.
A) What is the generator matrix G for this code, in systematic form?
B) Provide the shift register implementation of the CRC generator. What is the codeword for information sequence $\mathrm{M}=1001$? Show the register contents after each shift and the final CRC.

Problem 4:

For a cyclic code with generator sequence $\mathrm{G}=101101$, suppose the received sequence of bits is $\mathrm{T}=11100000111$. Did any errors occur?

Problem 5: Stop and Wait ARQ

A) A geosynchronous satellite has a half-duplex channel with a transmission rate of 10 kbps and a propagation delay of 0.25 sec each way. With a data packet size of 1000 bits and a loss probability p of 10^{-3}, what is the expected transmission time of a packet in this system? (Assume the acknowledgement packets are very small and $\mathrm{D}_{\mathrm{TA}}=0$.) What is the efficiency of the system?
B) Suppose the minimum acceptable efficiency is 50%. Assuming all other parameters are the same as part (a), what is the longest channel propagation delay for which we can still use stop-and-wait?

