MIT OpenCourseWare http://ocw.mit.edu

16.346 Astrodynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exercises 08

In a two-body boundary-value problem, the initial and terminal position vectors are:

 $\mathbf{r}_1 = 3\,\mathbf{i}_x \qquad \text{and} \qquad \mathbf{r}_2 = -4\,\mathbf{i}_x + 3\,\mathbf{i}_y$

The gravitational constant is $\mu = 60$.

Two orbits connecting \mathbf{r}_1 and \mathbf{r}_2 are possible for which the magnitude of the velocity vector is $v_1 = |\mathbf{v}_1| = 5$.

For each of these orbits calculate the following quantities:

- **1.** The semimajor axis *a*
- **2.** The parameter p
- **3.** The transfer time $t_2 t_1$ from \mathbf{r}_1 to \mathbf{r}_2 .

For the orbit having the **shorter** transfer time, calculate

4. The velocity vectors \mathbf{v}_1 and \mathbf{v}_2 at the terminals.

- 5. The angular momentum vector \mathbf{h} and the eccentricity vector \mathbf{e} .
- 6. The true anomaly f_1 of the initial position vector and the eccentric anomaly difference $E_2 E_1$.