MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exercises 08

In a two-body boundary-value problem, the initial and terminal position vectors are:

$$
\mathbf{r}_{1}=3 \mathbf{i}_{x} \quad \text { and } \quad \mathbf{r}_{2}=-4 \mathbf{i}_{x}+3 \mathbf{i}_{y}
$$

The gravitational constant is $\mu=60$.
Two orbits connecting \mathbf{r}_{1} and \mathbf{r}_{2} are possible for which the magnitude of the velocity vector is $\quad v_{1}=\left|\mathbf{v}_{1}\right|=5$.
For each of these orbits calculate the following quantities:

1. The semimajor axis a
2. The parameter p
3. The transfer time $t_{2}-t_{1}$ from \mathbf{r}_{1} to \mathbf{r}_{2}.

For the orbit having the shorter transfer time, calculate
4. The velocity vectors \mathbf{v}_{1} and \mathbf{v}_{2} at the terminals.
5. The angular momentum vector \mathbf{h} and the eccentricity vector \mathbf{e}.
6. The true anomaly f_{1} of the initial position vector and the eccentric anomaly difference $E_{2}-E_{1}$.

