MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exercises 07

A spacecraft is in orbit about a planet whose gravitational constant is $\mu=12$. At some instant of time, when the vehicle is at the point P_{1} for which $\mathbf{r}_{1}=4 \mathbf{i}_{x}$, a velocity change $\Delta \mathbf{v}_{1}$ is made to place the vehicle in a new orbit to intercept a target at the point P_{2} for which $\mathbf{r}_{2}=4 \mathbf{i}_{x}+4 \sqrt{3} \mathbf{i}_{y}$. The velocity at P_{1}, before the impulse, is $\mathbf{v}_{0}=\frac{2}{3} \sqrt{3} \mathbf{i}_{y}$.

1. Calculate the elements a, p and h of the orbit before the impulse.
2. Calculate the optimum $\Delta \mathbf{v}_{1}$ by first using an appropriate iteration algorithm to obtain the orbital parameter. Then determine the corresponding chordal and extended radial components of the optimum velocity The resulting velocity vector should be

$$
\mathbf{v}_{1}=\mathbf{i}_{x}+\sqrt{3} \mathbf{i}_{y}
$$

3. Find the new orbital elements.
4. Illustrate the calculations with an appropriate vector diagram.
