MIT OpenCourseWare http://ocw.mit.edu

16.346 Astrodynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exercises 07

A spacecraft is in orbit about a planet whose gravitational constant is $\mu = 12$. At some instant of time, when the vehicle is at the point P_1 for which $\mathbf{r}_1 = 4 \mathbf{i}_x$, a velocity change $\Delta \mathbf{v}_1$ is made to place the vehicle in a new orbit to intercept a target at the point P_2 for which $\mathbf{r}_2 = 4 \mathbf{i}_x + 4\sqrt{3} \mathbf{i}_y$. The velocity at P_1 , before the impulse, is $\mathbf{v}_0 = \frac{2}{3}\sqrt{3} \mathbf{i}_y$.

- **1.** Calculate the elements a, p and h of the orbit before the impulse.
- 2. Calculate the optimum $\Delta \mathbf{v}_1$ by first using an appropriate iteration algorithm to obtain the orbital parameter. Then determine the corresponding chordal and extended radial components of the optimum velocity The resulting velocity vector should be

$$\mathbf{v}_1 = \mathbf{i}_x + \sqrt{3} \, \mathbf{i}_y$$

- **3.** Find the new orbital elements.
- 4. Illustrate the calculations with an appropriate vector diagram.