MIT OpenCourseWare
http://ocw.mit.edu

16.346 Astrodynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exercises 02

1. The angular momentum and eccentricity vectors of an orbit are

$$
\mathbf{h}=2 \sqrt{\frac{\mu}{3}} \mathbf{i}_{z} \quad \mathbf{e}=-\frac{1}{3}\left(2 \mathbf{i}_{x}+\mathbf{i}_{y}\right)
$$

Find the position and velocity vectors \mathbf{r} and \mathbf{v} when the direction of the position vector is $\mathbf{i}_{r}=\mathbf{i}_{x}$. (Use $\mu=4 \pi^{2}$)
Answer: $\mathbf{r}=4 \mathbf{i}_{x} \quad$ and $\quad \mathbf{v}=\frac{\pi}{\sqrt{3}}\left(\mathbf{i}_{x}+\mathbf{i}_{y}\right)$
2. Prob. 4-8 To derive the polar equation of an ellipse with the origin of coordinates at the center of the ellipse (See Lecture 2, Page 3), we may consider the triangle CPF where r is the radius from the center C to a point P on the ellipse and F is the focus of the ellipse.
The sides of the triangle are

$$
P F=a-e x=a-e r \cos \theta \quad C F=a e \quad C P=r
$$

We can use the Law of Cosines for the triangle

$$
(a-e x)^{2}=(a-e r \cos \theta)^{2}=r^{2}+a^{2} e^{2}-2 a e r \cos \theta
$$

which gives

$$
r^{2}\left(1-e^{2} \cos ^{2} \theta\right)=a^{2}\left(1-e^{2}\right)=b^{2} \quad \text { or }
$$

$$
r=\frac{b}{\sqrt{1-e^{2} \cos ^{2} \theta}}
$$

$$
\begin{aligned}
1 \text { mile } & =1.609347221 \mathrm{~km} \\
1 \mathrm{au} & =149,597,870.00 \mathrm{~km} \\
1 \mathrm{au} & =92,955,620.79 \mathrm{miles} \\
1 \mathrm{au} / \text { day } & =1078.822025 \mathrm{miles} / \mathrm{sec} \\
1 \mathrm{au} / \text { day } & =5,696,180.29 \text { feet } / \mathrm{sec}
\end{aligned}
$$

