MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.323 Lecture 9

Constrained Optimal Control

Bryson and Ho - Section 3.x and Kirk - Section 5.3

- First consider cases with constrained control inputs so that $\mathbf{u}(t) \in \mathcal{U}$ where \mathcal{U} is some bounded set.
- Example: inequality constraints of the form $\mathbf{C}(\mathbf{x}, \mathbf{u}, t) \leq 0$
- Much of what we had on 6-3 remains the same, but algebraic condition that $H_{\mathbf{u}}=0$ must be replaced
- Note that $\mathbf{C}(\mathbf{x}, t) \leq 0$ is a much harder case
- Augment constraint to cost (along with differential equation constraints)

$$
J_{a}=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}}\left[H-\mathbf{p}^{T} \dot{\mathbf{x}}+\boldsymbol{\nu}^{T} \mathbf{C}\right] d t
$$

- Find the variation (assume t_{0} and $x\left(t_{0}\right)$ fixed):

$$
\begin{aligned}
\delta J_{a}= & h_{\mathbf{x}} \delta \mathbf{x}_{f}+h_{t_{f}} \delta t_{f}+\int_{t_{0}}^{t_{f}}\left[H_{\mathbf{x}} \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}(t)\right. \\
& \left.-\mathbf{p}^{T}(t) \delta \dot{\mathbf{x}}+\mathbf{C}^{T} \delta \boldsymbol{\nu}+\boldsymbol{\nu}^{T}\left\{\mathbf{C}_{\mathbf{x}} \delta \mathbf{x}+\mathbf{C}_{\mathbf{u}} \delta \mathbf{u}\right\}\right] d t \\
& +\left[H-\mathbf{p}^{T} \dot{\mathbf{x}}+\boldsymbol{\nu}^{T} \mathbf{C}\right]\left(t_{f}\right) \delta t_{f}
\end{aligned}
$$

- Now IBP

$$
-\int_{t_{0}}^{t_{f}} \mathbf{p}^{T}(t) \delta \dot{\mathbf{x}} d t=-\mathbf{p}^{T}\left(t_{f}\right)\left(\delta \mathbf{x}_{f}-\dot{\mathbf{x}}\left(t_{f}\right) \delta t_{f}\right)+\int_{t_{0}}^{t_{f}} \dot{\mathbf{p}}^{T}(t) \delta \mathbf{x} d t
$$

then combine and drop terminal conditions for simplicity:

$$
\begin{aligned}
\delta J_{a}= & \int_{t_{0}}^{t_{f}}\left\{\left[H_{\mathbf{x}}+\dot{\mathbf{p}}^{T}+\boldsymbol{\nu}^{T} \mathbf{C}_{\mathbf{x}}\right] \delta \mathbf{x}+\left[H_{\mathbf{u}}+\boldsymbol{\nu}^{T} \mathbf{C}_{\mathbf{u}}\right] \delta \mathbf{u}\right. \\
& \left.+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}(t)+\mathbf{C}^{T} \delta \boldsymbol{\nu}\right\} d t
\end{aligned}
$$

- Clean up by defining augmented Hamiltonian

$$
H_{a}(\mathbf{x}, \mathbf{u}, \mathbf{p}, t)=g+\mathbf{p}^{T}(t) \mathbf{a}+\boldsymbol{\nu}^{T}(t) \mathbf{C}
$$

where (see 2-12)

$$
\nu_{i}(t)\left\{\begin{array}{lll}
\geq 0 & \text { if } & C_{i}=0 \\
=0 & \text { if } & \text { active } \\
C_{i}<0 & \text { inactive }
\end{array}\right.
$$

- So that $\nu_{i} C_{i}=0 \forall i$.
- So necessary conditions for $\delta J_{a}=0$ are that for $t \in\left[t_{0}, t_{f}\right]$

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{a}(\mathbf{x}, \mathbf{u}, t) \\
\dot{\mathbf{p}} & =-\left(H_{a}\right)_{\mathbf{x}}^{T} \\
\left(H_{a}\right)_{\mathbf{u}} & =0
\end{aligned}
$$

- With appropriate boundary conditions and $\nu_{i} C_{i}(\mathbf{x}, \mathbf{u}, t)=0$
- Complexity here is that typically will have sub-arcs to the solution where the inequality constraints are active (so $C_{i}(\mathbf{x}, \mathbf{u}, t)=0$) and then not (so $\nu_{i}=0$).
- Transitions between the sub-arcs must be treated as corners that are at unspecified times - need to impose the equivalent of the Erdmann-Weirstrass corner conditions for the control problem, as in Lecture 8.

Constrained Example

- Design the control inputs that minimize the cost functional

$$
\min _{u} J=-x(4)+\int_{0}^{4} u^{2}(t) d t
$$

with $\dot{x}=x+u, x(0)=0$, and $u(t) \leq 5$.

- Form augmented Hamiltonian:

$$
H=u^{2}+p(x+u)+\nu(u-5)
$$

- Note that, independent of whether the constraint is active or not, we have that

$$
\dot{p}=-H_{x}=-p \quad \Rightarrow \quad p(t)=c e^{-t}
$$

and from transversality BC , know that $p(4)=\partial h / \partial x=-1$, so have that $c=-e^{4}$ and thus $p(t)=-e^{4-t}$

- Now let us assume that the control constraint is initially active for some period of time, then $\nu \geq 0, u=5$, and

$$
H_{u}=2 u+p+\nu=0
$$

so we have that

$$
\nu=-10-p=-10+e^{4-t}
$$

- Question: for what values of t will $\nu \geq 0$?

$$
\begin{aligned}
\nu & =-10+e^{4-t} \geq 0 \\
& \rightarrow e^{4-t} \geq 10 \\
& \rightarrow 4-t \geq \ln (10) \\
& \rightarrow 4-\ln (10) \geq t
\end{aligned}
$$

- So provided $t \leq t_{c}=4-\ln (10)$ then $\nu \geq 0$ and the assumptions are consistent.
- Now consider the inactive constraint case:

$$
H_{u}=2 u+p=0 \Rightarrow u(t)=-\frac{1}{2} p(t)
$$

- The control inputs then are

$$
u(t)= \begin{cases}5 & t \leq t_{c} \\ \frac{1}{2} e^{4-t} & t \geq t_{c}\end{cases}
$$

which is continuous at t_{c}.

- To finish the solution, find the state in the two arcs $x(t)$ and enforce continuity at t_{c}, which gives that:

$$
x(t)= \begin{cases}5 e^{t}-5 & t \leq t_{c} \\ \left.-\frac{1}{4} e^{4-t}+\left(5-25 e^{-4}\right) e^{t}\right) & t \geq t_{c}\end{cases}
$$

- Note that since the corner condition was not specified by a state constraint, continuity of λ and H at the corner is required - but we did not need to use that in this solution, it will occur naturally.

Pontryagin's Minimum Principle

- For an alternate perspective, consider general control problem statement on 6-1 (free end time and state). Then on 6-2,

$$
\begin{align*}
\delta J_{a} & =\left(h_{\mathbf{x}}-\mathbf{p}^{T}\left(t_{f}\right)\right) \delta \mathbf{x}_{f}+\left[h_{t_{f}}+H\right]\left(t_{f}\right) \delta t_{f} \tag{9.13}\\
& +\int_{t_{0}}^{t_{f}}\left[\left(H_{\mathbf{x}}+\dot{\mathbf{p}}^{T}\right) \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}(t)\right] d t
\end{align*}
$$

now assume we have a trajectory that satisfies all other differential equation and terminal constraints, then all remains is

$$
\begin{equation*}
\Rightarrow \delta J_{a}=\int_{t_{0}}^{t_{f}}\left[H_{\mathbf{u}}(t) \delta \mathbf{u}(t)\right] d t \tag{9.14}
\end{equation*}
$$

- For the control to be minimizing, need $\delta J_{a} \geq 0$ for all admissible variations in \mathbf{u} (i.e., $\delta \mathbf{u}$ for which $C_{\mathbf{u}} \delta \mathbf{u} \leq 0$)
- Equivalently, need $\delta H=H_{\mathbf{u}}(t) \delta \mathbf{u}(t) \geq 0$ for all time and for all admissible $\delta \mathbf{u}$
- Gives condition that $H_{\mathbf{u}}=0$ if control constraints not active
- However, at the constraint boundary, could have $H_{\mathbf{u}} \neq 0$ and whether we need $H_{\mathbf{u}}>0$ or $H_{\mathbf{u}}<0$ depends on the direction (sign) of the admissible $\delta \mathbf{u}$.

Figure 9.1: Examples of options for $\delta H=H_{\mathbf{u}}(t) \delta \mathbf{u}(t)$. Left: unconstrained min, so need $H_{\mathbf{u}}=0$. Middle: constraint on left, so at min value, must have $\delta u \geq 0$ \Rightarrow need $H_{\mathbf{u}} \geq 0$ so that $\delta H \geq 0$. Right: constraint on right, so at min value, must have $\delta u \leq 0 \Rightarrow$ need $H_{\mathbf{u}} \leq 0$ so that $\delta H \geq 0$.

- The requirement that $\delta H \geq 0$ says that δH must be non-improving to the cost (recall trying to minimize the cost) over the set of possible $\delta \mathbf{u}$.
- Can actually state a stronger condition: H must be minimized over the set of all possible \mathbf{u}
- Thus for control constrained problems, third necessary condition

$$
H_{\mathbf{u}}=0
$$

must be replaced with a more general necessary condition

$$
\mathbf{u}^{\star}(t)=\arg \left\{\min _{\mathbf{u}(t) \in \mathcal{U}} H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t)\right\}
$$

- So must look at H and explicitly find the minimizing control inputs given the constraints - not as simple as just solving $H_{\mathbf{u}}=0$
- Known as Pontryagin's Minimum Principle
- Handles "edges" as well, where the admissible values of $\delta \mathbf{u}$ are "inwards"
- PMP is very general and applies to all constrained control problems will now apply it to a special case in which the performance and the constraints are linear in the control variables.

PMP Example: Control Constraints

- Consider simple system $y=G(s) u, G(s)=1 / s^{2}$ with $|u(t)| \leq u_{m}$ - Motion of a rigid body with limited control inputs - can be used to model many different things
- Want to solve the minimum time-fuel problem

$$
\min J=\int_{0}^{t_{f}}(1+b|u(t)|) d t
$$

- The goal is to drive the state to the origin with minimum cost.
- Typical of many spacecraft problems - $\int|u(t)| d t$ sums up the fuel used, as opposed to $\int u^{2}(t) d t$ that sums up the power used.
- Define $x_{1}=y, x_{2}=\dot{y} \Rightarrow$ dynamics are $\dot{x}_{1}=x_{2}, \dot{x}_{2}=u$
- First consider the response if we apply ± 1 as the input. Note:
- If $u=1, x_{2}(t)=t+c_{1}$ and

$$
x_{1}(t)=0.5 t^{2}+c_{1} t+c_{2}=0.5\left(t+c_{1}\right)^{2}+c_{3}=0.5 x_{2}(t)^{2}+c_{3}
$$

- If $u=-1, x_{2}(t)=-t+c_{4}$ and

$$
x_{1}(t)=-0.5 t^{2}+c_{4} t+c_{5}=-0.5\left(t+c_{4}\right)^{2}+c_{6}=-0.5 x_{2}(t)^{2}+c_{6}
$$

Figure 9.2: Possible response curves - what is the direction of motion?

- Hamiltonian for the system is:

$$
\begin{aligned}
H & =1+b|u|+\left[\begin{array}{ll}
p_{1} & p_{2}
\end{array}\right]\left\{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u\right\} \\
& =1+b|u|+p_{1} x_{2}+p_{2} u
\end{aligned}
$$

- First find the equations for the co-state:

$$
\dot{\mathbf{p}}=-H_{\mathbf{x}}^{T} \quad \Rightarrow \quad \begin{cases}\dot{p}_{1}=-H_{x_{1}}=0 & \rightarrow p_{1}=c_{1} \\ \dot{p}_{2}=-H_{x_{2}}=-p_{1} & \rightarrow p_{2}=-c_{1} t+c_{2}\end{cases}
$$

- So p_{2} is linear in time
- To find optimal control, look at the parts of H that depend on u :

$$
\tilde{H}=b|u|+p_{2} u
$$

- Recall PMP: given constraints, goal is to find u that minimizes H (or \tilde{H})
- Sum of two functions $|u|$ and u - sign of which depends on sign and relative size of p_{2} compared to $b>0$
- Three cases to consider (plots use $u_{m}=1.5$):

1. $p_{2}>b>0 \rightarrow$ choose $u^{\star}(t)=-u_{m}$

Figure 9.3: $b=1, \underset{\text { fopt1 }}{p_{2}}=2$, so $p_{2}>b>0$
2. $p_{2}<-b \rightarrow$ choose $u^{\star}(t)=u_{m}$

Figure 9.4: $b=1, p_{2}=-2$, so $p_{2}<-b$
3. $-b<p_{2}<b \rightarrow$ choose $u^{\star}(t)=0$

Figure 9.5: $b=1, p_{2}=1$, so $-b<p_{2}<b$

- The resulting control law is:

$$
u(t)=\left\{\begin{array}{cr}
\begin{array}{cr}
-u_{m} & b< \\
0 & p_{2}(t) \\
0 & -b< \\
u_{2}(t)< & b \\
u_{m} & p_{2}(t)<
\end{array} \quad-b
\end{array}\right.
$$

- So the control depends on $p_{2}(t)$ - but since it is a linear function of time, it is only possible to get at most 2 switches
- Also, since $\dot{x}_{2}(t)=u$, and since we must stop at t_{f}, then must have that $u= \pm u_{m}$ at t_{f}
- To complete the solution, impose the boundary conditions (transversality condition), with $x_{2}\left(t_{f}\right)=0$

$$
H\left(t_{f}\right)+h_{t}\left(t_{f}\right)=0 \quad \rightarrow \quad 1+b\left|u\left(t_{f}\right)\right|+p_{2}\left(t_{f}\right) u\left(t_{f}\right)=0
$$

- If $u=u_{m}$, then $1+b u_{m}+p_{2}\left(t_{f}\right) u_{m}=0$ implies that

$$
p_{2}\left(t_{f}\right)=-\left(b+\frac{1}{u_{m}}\right)<-b
$$

which is consistent with the selection rules.

- And if $u=-u_{m}$, then $1+b u_{m}-p_{2}\left(t_{f}\right) u_{m}=0$ implies that

$$
p_{2}\left(t_{f}\right)=\left(b+\frac{1}{u_{m}}\right)>b
$$

which is also consistent.

- So the terminal condition does not help us determine if $u= \pm u_{m}$, since it could be either
- So first look at the case where $u\left(t_{f}\right)=u_{m}$. Know that

$$
p_{2}(t)=c_{2}-c_{1} t
$$

and $p_{2}\left(t_{f}\right)=-\left(b+\frac{1}{u_{m}}\right)<-b$.

- Assume that $c_{1}>0$ so that we get some switching.

Figure 9.6: Possible switching case, but both t_{f} and c_{1} are unknown at this point.

- Then set $p_{2}\left(t_{1}\right)=-b$ to get that $t_{1}=t_{f}-1 /\left(u_{m} c_{1}\right)$
- And $p_{2}\left(t_{2}\right)=b$ gives $t_{2}=t_{f}-\left(2 b+1 / u_{m}\right) / c_{1}$
- Now look at the state response:
- Starting at the end: $\ddot{y}=u_{m}$, gives $y(t)=u_{m} / 2 t^{2}+c_{3} t+c_{4}$, where $\dot{y}=y=0$ at t_{f} gives us that $c_{3}=-u_{m} t_{f}$ and $c_{4}=u_{m} / 2 t_{f}^{2}$, so

$$
y(t)=\frac{u_{m}}{2} t^{2}-u_{m} t_{f} t+\frac{u_{m}}{2} t_{f}^{2}=\frac{u_{m}}{2}\left(t-t_{f}\right)^{2}
$$

- But since $\dot{y}(t)=u_{m} t+c_{3}=u_{m}\left(t-t_{f}\right)$, then $y(t)=\frac{\dot{y}(t)^{2}}{2 u_{m}}$
- State response associated with $u=u_{m}$ is in lower right quadrant of the y / \dot{y} phase plot
- Between times $t_{2}-t_{1}$, control input is zero \Rightarrow coasting phase.
- Terminal condition for coast same as the start of the next one:

$$
y\left(t_{1}\right)=\frac{u_{m}}{2}\left(t_{1}-t_{f}\right)^{2}=\frac{1}{2 u_{m} c_{1}^{2}}
$$

and $\dot{y}\left(t_{1}\right)=-1 / c_{1}$

- On a coasting arc, \dot{y} is a constant (so $\dot{y}\left(t_{2}\right)=-1 / c_{1}$), and thus

$$
y\left(t_{2}\right)-\frac{\left(t_{1}-t_{2}\right)}{c_{1}}=\frac{1}{2 u_{m} c_{1}^{2}}
$$

which gives that

$$
\begin{aligned}
y\left(t_{2}\right) & =\frac{1}{2 u_{m} c_{1}^{2}}+\frac{1}{c_{1}}\left(t_{f}-\frac{1}{u_{m} c_{1}}-\left(t_{f}-\left(\frac{2 b}{c_{1}}+\frac{1}{u_{m} c_{1}}\right)\right)\right) \\
& =\left(2 b+\frac{1}{2 u_{m}}\right) \frac{1}{c_{1}^{2}}=\left(2 b+\frac{1}{2 u_{m}}\right) \dot{y}\left(t_{2}\right)^{2}
\end{aligned}
$$

- So the first transition occurs along the curve

$$
y(t)=\left(2 b+\frac{1}{2 u_{m}}\right) \dot{y}(t)^{2}
$$

- For the first arc, things get a bit more complicated.

Clearly $u(t)=-u_{m}$, with IC y_{0}, \dot{y}_{0} so

$$
\begin{aligned}
& \dot{y}(t)=-u_{m} t+c_{5}=-u_{m} t+\dot{y}_{0} \\
& y(t)=-\frac{u_{m}}{2} t^{2}+c_{5} t+c_{6}=-\frac{u_{m}}{2} t^{2}+\dot{y}_{0} t+y_{0}
\end{aligned}
$$

- Now project forward to t_{2}

$$
\begin{aligned}
& \dot{y}\left(t_{2}\right)=-u_{m} t_{2}+\dot{y}_{0}=\dot{y}\left(t_{1}\right)=-\frac{1}{c_{1}} \rightarrow c_{1}=\frac{2\left(b+1 / u_{m}\right)}{t_{f}-\dot{y}_{0} / u_{m}} \\
& y\left(t_{2}\right)=-\frac{u_{m}}{2} t_{2}^{2}+\dot{y}_{0} t_{2}+y_{0}
\end{aligned}
$$

and use these expressions in the quadratic for the switching curve to solve for c_{1}, t_{1}, t_{2}

- The solutions have a very distinctive Bang-Off-Bang pattern - Two parabolic curves define switching from $+u_{m}$ to 0 to $-u_{m}$

Figure 9.7: $y_{0}=2 \dot{y}_{0}=3 b=0.75 u_{m}=1.5$

- Switching control was derived using a detailed evaluation of the state and costate
- But final result is a switching law that can be written wholly in terms of the system states.

Figure 9.8: $y_{0}=2 \dot{y}_{0}=3 b=2 u_{m}=1.5$

Figure 9.9: $y_{0}=2 \dot{y}_{0}=3 b=0.1 u_{m}=1.5$

- Clearly get a special result as $b \rightarrow 0$, which is the solution to the minimum time problem
- Control inputs are now just Bang-Bang
- One parabolic curve defines switching from $+u_{m}$ to $-u_{m}$

Figure 9.10: Min time: $y_{0}=2 \dot{y}_{0}=3 b=0 u_{m}=1.5$

- Can show that the switching and final times are given by
$t_{1}=\dot{y}(0)+\sqrt{y(0)+0.5 \dot{y}^{2}(0)} \quad t_{f}=\dot{y}(0)+2 \sqrt{y(0)+0.5 \dot{y}^{2}(0)}$
- Trade-off: coasting is fuel efficient, but it takes a long time.

Figure 9.11: Summary of switching times for various fuel weights

Min time fuel

\% Min time fuel for double integrator
\% 16.323 Spring 2008
\% Jonathan How
figure(1);clf;\%
if jcase==1;y0=2;yd0=3; b=.75;u_m=1.5;\% baseline
elseif jcase $=2 ; y 0=2 ; y d 0=3 ; b=2 ; u_{\text {_ }}=1.5 ; \%$ fuel exp
elseif jcase==3;y0=2;yd0=3; b=.1;u_m=1.5;\% fuel cheap
elseif jcase $=4 ; y 0=2 ; y d 0=3 ; b=0 ; u_{-}=1.5 ; \%$ min time
elseif jcase==5;y0=-4;yd0=4; b=1;u_m=1.5;\% min time
end
\% Tf is unknown - put together the equations to solve for it
alp=(1/2/u_m+2*b) \% switching line
\% middle of 8--6: $t_{-} 2$ as a ftn of t_f
$\mathrm{T} 2=\left[1 / \mathrm{u}_{-} \mathrm{m}\left(2 * \mathrm{~b}+1 / \mathrm{u}_{\mathrm{n}} \mathrm{m}\right) * \mathrm{yd} 0 / \mathrm{u}_{\mathrm{m}} \mathrm{m}\right] /\left(2 * \mathrm{~b}+2 / \mathrm{u}_{-} \mathrm{m}\right) ; \%$
\% bottom of 8--7: quadratic for $y\left(t _2\right)$ in terms of $t _2$
$\%$ converted into quad in t_f
T_f=roots(-u_m/2*conv(T2,T2)+yd0*[0 T2]+[0 0 y0] - ...
alp*conv(-u_m*T2+[0 yd0],-u_m*T2+[0 ydO]));\%
t_f=max(T_f);t=[0:.01:t_f]'; \%
c_1=(2*b+2/u_m)/(t_f-yd0/u_m); \% key parameters for p(t)
c_2=c_1*t_f-(b+1/u_m);\% key parameters for p(t)
t_1=t_f-1/(u_m*c_1); t_2=t_f-(2*b+1/u_m)/c_1;\%switching times
$\mathrm{G}=\mathrm{ss}\left(\left[\begin{array}{lll}0 & 1 ; 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1\end{array}\right]\right.$, $\left.\operatorname{eye}(2), z \operatorname{eros}(2,1)\right)$;
arc1=[0:.001:t_2]'; arc2=[t_2:.001:t_1]';arc3=[t_1:.001:t_f]'; \%
if jcase==4;arc2=[t_2 t_2+1e-6]';end
$[\mathrm{Y} 1, \mathrm{~T} 1, \mathrm{X} 1]=\lim \left(\mathrm{G},-\mathrm{u} _\mathrm{m} * \mathrm{ones}^{(l e n g t h}(\operatorname{arc} 1), 1\right), \operatorname{arc1},[\mathrm{y} 0 \mathrm{yd} 0]$ '); \%
[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)'); \%
$[Y 3, T 3, X 3]=1 \operatorname{sim}\left(G, u_{-m *}\right.$ ones (length (arc3),1), arc3,Y2(end,:)'); \%
plot(Y1(:,1),Y1(:,2),'Linewidth',2); hold on\%
plot(Y2(:,1),Y2(:,2),'Linewidth',2); plot(Y3(:,1),Y3(:,2),'Linewidth', 2);\%
ylabel('dy/dt','Fontsize',18); xlabel('y(t)','Fontsize', 12); \%
text ($-4,3, ' y=-1 /\left(2 u _m\right)(d y / d t){ }^{\wedge} 2$ ', 'Fontsize', 12) \%
if jcase $\sim=4$; text $\left(-5,0, ' y=-\left(1 /\left(2 u _m\right)+2 b\right)(d y / d t)\right)^{\prime}$ ', ' $^{\prime}$ Fontsize', 12) ; end
text (4,4,'-','Fontsize', 18) ; text ($-4,-4, '+', '$ Fontsize', 18) ; grid;hold off
title(['t_f = ', mat2str(t_f)],'Fontsize', 12) \%
hold on;\% plot the switching curves

 hold off;axis([-4 4-4 4]/4*6);
figure (2) ; p2=c_2-c_1*t; \%
plot(t,p2,'Linewidth',4);\%
hold on; plot([0 max $(t)],[b \mathrm{~b}], ' k--, '$ Linewidth', 2);hold off; \%
hold on; plot([0 max(t)],-[b b],'k--','Linewidth', 2);hold off; \%
hold on; plot([t_1 t_1],[-2 2],'k:','Linewidth',3);hold off; \%
text(t_1+.1,1.5,'t_1', 'Fontsize', 12)\%
hold on; plot([t_2 t_2],[-2 2],'k:','Linewidth',3);hold off; \%
text(t_2+.1,-1.5,'t_2', 'Fontsize',12)\%
title(['b = ',mat2str(b),' u_m = ', mat2str(u_m)],'Fontsize', 12); \%
ylabel('p_2(t)','Fontsize',12); xlabel('t','Fontsize', 12);\%
text(1, b+.1,' 'b','Fontsize', 12); text(1,-b+.1,'-b', 'Fontsize', 12)\%
axis([0 t_f -3 3]); grid on; \%
\%
if jcase==1
print -f1 -dpng -r300 fopt5a.png; ;print -f2 -dpng -r300 fopt5b.png;
elseif jcase==2
print -f1 -dpng -r300 fopt6a.png;print -f2 -dpng -r300 fopt6b.png;
elseif jcase==3
print -f1 -dpng -r300 fopt7a.png;print -f2 -dpng -r300 fopt7b.png;
elseif jcase==4
print -f1 -dpng -r300 fopt8a.png;print -f2 -dpng -r300 fopt8b.png;
end

- Can repeat this analysis for minimum time and energy problems using the PMP
- Issue is that the process of a developing a solution by analytic construction is laborious and very hard to extend to anything nonlinear and/or linear with more than 2 states
- Need to revisit the problem statement and develop a new approach.
- Goal: develop the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+}
$$

that drives the system (nonlinear, but linear control inputs)

$$
\dot{\mathbf{x}}=A(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}
$$

from an arbitrary state \mathbf{x}_{0} to the origin to minimize maneuver time

$$
\min J=\int_{t_{0}}^{t_{f}} d t
$$

- Solution: form the Hamiltonian

$$
\begin{aligned}
H & =1+\mathbf{p}^{T}(t)\{A(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}\} \\
& =1+\mathbf{p}^{T}(t)\left\{A(\mathbf{x}, t)+\left[\mathbf{b}_{1}(\mathbf{x}, t) \mathbf{b}_{2}(\mathbf{x}, t) \cdots \mathbf{b}_{m}(\mathbf{x}, t)\right] \mathbf{u}\right\} \\
& =1+\mathbf{p}^{T}(t) A(\mathbf{x}, t)+\sum_{i=1}^{m} \mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)
\end{aligned}
$$

- Now use the PMP: select $u_{i}(t)$ to minimize H, which gives

$$
u_{i}(t)=\left\{\begin{array}{l}
M_{i}^{+} \text {if } \mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t)<0 \\
M_{i}^{-} \text {if } \mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t)>0
\end{array}\right.
$$

which gives us the expected Bang-Bang control

- Then solve for the costate

$$
\dot{\mathbf{p}}=-H_{\mathbf{x}}^{T}=-\left(\frac{\partial A}{\partial \mathbf{x}}+\frac{\partial B}{\partial \mathbf{x}} u\right)^{T} \mathbf{p}
$$

- Could be very complicated for a nonlinear system.
- Note: shown how to pick $u(t)$ given that $\mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) \neq 0$
- Not obvious what to do if $\mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t)=0$ for some finite time interval.
- In this case the coefficient of $u_{i}(t)$ is zero, and PMP provides no information on how to pick the control inputs.
- Will analyze this singular condition in more detail later.
- To develop further insights, restrict the system model further to LTI, so that

$$
A(\mathbf{x}, t) \rightarrow A \mathbf{x} \quad B(\mathbf{x}, t) \rightarrow B
$$

- Assume that $[A, B]$ controllable
- Set $M_{i}^{+}=-M_{i}^{-}=u_{m_{i}}$
- Just showed that if a solution exists, it is Bang-Bang
- Existence: if $\mathbb{R}\left(\lambda_{i}(A)\right) \leq 0$, then an optimal control exists that transfers any initial state \mathbf{x}_{0} to the origin.
Must eliminate unstable plants from this statement because the control is bounded.
- Uniqueness: If an extremal control exists (i.e. solves the necessary condition and satisfies the boundary conditions), then it is unique. Satisfaction of the PMP is both necessary and sufficient for timeoptimal control of a LTI system.
- If the eigenvalues of A are all real, and a unique optimal control exists, then each control input can switch at most $n-1$ times.
- Still need to find the costates to determine the switching times but much easier in the linear case.
- Goal: develop the control input sequence

$$
M_{i}^{-} \leq u_{i}(t) \leq M_{i}^{+}
$$

that drives the system

$$
\dot{\mathbf{x}}=A(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}
$$

from an arbitrary state \mathbf{x}_{0} to the origin in a fixed time t_{f} and optimizes the cost

$$
\min J=\int_{t_{0}}^{t_{f}} \sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right| d t
$$

- Solution: form the Hamiltonian

$$
\begin{aligned}
H & =\sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right|+\mathbf{p}^{T}(t)\{A(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}\} \\
& =\sum_{i=1}^{m} c_{i}\left|u_{i}(t)\right|+\mathbf{p}^{T}(t) A(\mathbf{x}, t)+\sum_{i=1}^{m} \mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t) \\
& =\sum_{i=1}^{m}\left[c_{i}\left|u_{i}(t)\right|+\mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]+\mathbf{p}^{T}(t) A(\mathbf{x}, t)
\end{aligned}
$$

- Use the PMP, which requires that we select $u_{i}(t)$ to ensure that for all admissible $u_{i}(t)$

$$
\sum_{i=1}^{m}\left[c_{i}\left|u_{i}^{\star}(t)\right|+\mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) u_{i}^{\star}(t)\right] \leq \sum_{i=1}^{m}\left[c_{i}\left|u_{i}(t)\right|+\mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)\right]
$$

- If the components of \mathbf{u} are independent, then can just look at

$$
c_{i}\left|u_{i}^{\star}(t)\right|+\mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) u_{i}^{\star}(t) \leq c_{i}\left|u_{i}(t)\right|+\mathbf{p}^{T}(t) \mathbf{b}_{i}(\mathbf{x}, t) u_{i}(t)
$$

- As before, this boils down to a comparison of c_{i} and $\mathbf{p}^{T}(t) \mathbf{b}_{i}$
- Resulting control law is:

$$
u_{i}^{\star}(t)=\left\{\begin{array}{crr}
M_{i}^{-} & \text {if } & c_{i}<\mathbf{p}^{T}(t) \mathbf{b}_{i} \\
0 & \text { if } & -c_{i}<\mathbf{p}^{T}(t) \mathbf{b}_{i}<c_{i} \\
M_{i}^{+} & \text {if } & \mathbf{p}^{T}(t) \mathbf{b}_{i}<-c_{i}
\end{array}\right.
$$

- Consider $G(s)=1 / s^{2} \Rightarrow A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \quad B=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\min J=\int_{t_{0}}^{t_{f}}|u(t)| d t
$$

- Drive state to the origin with t_{f} fixed.
- Gives $H=|u|+p_{1} x_{2}+p_{2} u$
- Final control $u\left(t_{f}\right)=u_{m} \Rightarrow p_{2}\left(t_{f}\right)<-1 p_{2}(t)=c_{2}-c_{1} t$
- As before, integrate EOM forward from 0 to t_{2} using $-u_{m}$, then from t_{2} to t_{1} using $u=0$, and from t_{1} to t_{f} using u_{m} - Apply terminal conditions and solve for c_{1} and c_{2}

Figure 9.12: Min Fuel for varying final times

Figure 9.13: Min fuel for fixed final time, varying IC's

- First switch depends on IC and $t_{f} \Rightarrow$ no clean closed-form solution for switching curve
- Larger t_{f} leads to longer coast.
- For given t_{f}, there is a limit to the IC from which we can reach the origin.
- If specified completion time $t_{f}>T_{\min }=\dot{y}(0)+2 \sqrt{y(0)+0.5 \dot{y}^{2}(0)}$, then

$$
\begin{aligned}
& t_{2}=0.5\left\{\left(\dot{y}(0)+t_{f}\right)-\sqrt{\left(\dot{y}(0)-t_{f}\right)^{2}-\left(4 y(0)+2 \dot{y}^{2}(0)\right)}\right\} \\
& t_{1}=0.5\left\{\left(\dot{y}(0)+t_{f}\right)+\sqrt{\left(\dot{y}(0)-t_{f}\right)^{2}-\left(4 y(0)+2 \dot{y}^{2}(0)\right)}\right\}
\end{aligned}
$$

- Goal: for a fixed final time and terminal constraints

$$
\min J=\frac{1}{2} \int_{0}^{t_{f}} \mathbf{u}^{T} R \mathbf{u} d t \quad R>0
$$

- Again use special dynamics:

$$
\begin{aligned}
\dot{\mathbf{x}} & =A(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u} \\
H & =\frac{1}{2} \mathbf{u}^{T} R \mathbf{u}+\mathbf{p}^{T}\{A(\mathbf{x}, t)+B(\mathbf{x}, t) \mathbf{u}\}
\end{aligned}
$$

- Obviously with no constraints on \mathbf{u}, solve $H_{\mathbf{u}}=0$, to get

$$
\mathbf{u}=-R^{-1} B^{T} \mathbf{p}(t)
$$

- But with bounded controls, must solve:

$$
\mathbf{u}^{\star}(t)=\arg \min _{\mathbf{u}(t) \in \mathcal{U}}\left[\frac{1}{2} \mathbf{u}^{T} R \mathbf{u}+\mathbf{p}^{T} B(\mathbf{x}, t) \mathbf{u}\right]
$$

which is a constrained quadratic program in general

- However, for diagonal R, the effects of the controls are independent

$$
\mathbf{u}^{\star}(t)=\arg \min _{\mathbf{u}(t) \in \mathcal{U}}\left[\sum_{i=1}^{m} \frac{1}{2} R_{i i} u_{i}^{2}+\mathbf{p}^{T} \mathbf{b}_{i} u_{i}\right]
$$

- In the unconstrained case, each $u_{i}(t)$ can easily be determined by minimizing

$$
\frac{1}{2} R_{i i} u_{i}^{2}+\mathbf{p}^{T} \mathbf{b}_{i} u_{i} \quad \rightarrow \quad \tilde{u}_{i}=-R_{i i}^{-1} \mathbf{p}^{T} \mathbf{b}_{i}
$$

- The resulting controller inputs are $u_{i}(t)=\operatorname{sat}\left(\tilde{u}_{i}(t)\right)$

$$
u_{i}(t)=\left\{\begin{array}{rlrr}
M_{i}^{-} & \text {if } & & \tilde{u}_{i}<M_{i}^{-} \\
\tilde{u}_{i} & \text { if } & M_{i}^{-}<\tilde{u}_{i}<M_{i}^{+} \\
M_{i}^{+} & \text {if } & M_{i}^{+}<\tilde{u}_{i}
\end{array}\right.
$$

Min Fuel

```
% Min fuel for double integrator
% 16.323 Spring 2008
% Jonathan How
%
c=1;
t=[0:.01:t_f];
alp=(1/2/u_m) % switching line
T_2=roots([-u_m/2 ydO y0] + conv([-u_m yd0],[-2 t_f+yd0/u_m])-alp*conv([-u_m ydO],[-u_m yd0]));%
t_2=min(T_2);
yd2=-u_m*t_2+yd0;yd1=yd2;
t_1=t_f+yd1/u_m;
c_1=2/(t_1-t_2);c_2=c_1*t_1-1;
G=ss([0 1;0 0],[0 1]',eye(2),zeros(2,1));
arc1=[0:.001:t_2]'; arc2=[t_2:.001:t_1]';arc3=[t_1:.001:t_f]'; %
[Y1,T1,X1]=lsim(G,-u_m*ones(length(arc1),1),arc1,[y0 yd0]'); %
[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)'); %
[Y3,T3,X3]=lsim(G,u_m*ones(length(arc3),1),arc3,Y2(end,:)'); %
plot(Y1(:,1),Y1(:,2),zzz,'Linewidth',2); hold on%
plot(Y2(:,1),Y2(:,2),zzz,'Linewidth',2); plot(Y3(:,1),Y3(:,2),zzz,'Linewidth',2);%
ylabel('dy/dt','Fontsize',18); xlabel('y(t)','Fontsize',12);%
text(-4,3,'y=-1/(2u_m) (dy/dt)^2', 'Fontsize', 12)%
text(4,4,'-','Fontsize',18);text(-4,-4,'+','Fontsize',18);grid on;hold off
title(['t_f = ',mat2str(t_f)],'Fontsize',12)%
hold on;% plot the switching curves
kk=[0:.1:8]'; plot(-alp*kk.^2,kk,'k--');plot(alp*kk.^2,-kk,'k--');
hold off;axis([-4 4 -4 4]/4*6);
figure(2);%
p2=c_2-c_1*t;%
plot(t,p2,'Linewidth',4);%
hold on; plot([0 t_f],[c c],'k--','Linewidth',2);hold off; %
hold on; plot([0 t_f],-[c c],'k--','Linewidth',2);hold off; %
hold on; plot([t_1 t_1],[-2 2],'k:','Linewidth',3);hold off; %
text(t_1+.1,1.5,'t_1','Fontsize',12)%
hold on; plot([t_2 t_2],[-2 2],'k:','Linewidth',3);hold off; %
text(t_2+.1,-1.5,'t_2','Fontsize',12)%
title(['c = ',mat2str(c),' u_m = ',mat2str(u_m)],'Fontsize',12);%
ylabel('p_2(t)','Fontsize',12); xlabel('t','Fontsize',12);%
text(1,c+.1,'c','Fontsize',12);text(1,-c+.1,'-c','Fontsize',12)%
axis([0 t_f -3 3]);grid on; %
return
figure(1);clf
y0=2;yd0=3;t_f=5.8;u_m=1.5;zzz=' -' ;minu;
figure(1);hold on
y0=2;yd0=3;t_f=16;u_m=1.5;zzz='k--';minu;
figure(1);hold on
y0=2;yd0=3;t_f=32;u_m=1.5;zzz='r:';minu;
figure(1);
axis([-6 6 -6 6])
legend('5.8','16','32')
print -f1 -dpng -r300 uopt1.png;
figure(1);clf
y0=2;yd0=2;t_f=8;u_m=1.5;zzz='-';minu
figure(1);hold on
y0=6;yd0=2;t_f=8;u_m=1.5;zzz='k--';minu
figure(1);hold on
y0=15.3;yd0=2;t_f=8;u_m=1.5;zzz='r:';minu
figure(1);axis([-2 25 -6 6])
print -f1 -dpng -r300 uopt2.png;
```

