
MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

16.323 Lecture 9

Constrained Optimal Control

Bryson and Ho – Section 3.x and Kirk – Section 5.3

�

� �	 �
• �	 �

�

�

Spr 2008	 16.323 9–1
Constrained Optimal Control

•	 First consider cases with constrained control inputs so that u(t) ∈ U
where U is some bounded set.
– Example: inequality constraints of the form C(x, u, t) ≤ 0

– Much of what we had on 6–3 remains the same, but algebraic con

dition that Hu = 0 must be replaced

– Note that C(x, t) ≤ 0 is a much harder case

•	 Augment constraint to cost (along with differential equation con

straints) � tf � �
Ja = h(x(tf), tf) + H − p T ẋ + νT C dt

t0

•	 Find the variation (assume t0 and x(t0) fixed):
tf �

δJa = hxδxf + htf δtf + Hxδx + Huδu + (Hp − ẋT)δp(t)
t0

−p T (t)δẋ + CTδν + νT {Cxδx + Cuδu} dt

+	 H − p T ẋ + νT C (tf)δtf

Now IBP
tf tf

−
t0

p T (t)δẋdt = −p T (tf) (δxf − ẋ(tf)δtf) +
t0

ṗT (t)δxdt

then combine and drop terminal conditions for simplicity:
tf �� � � �

δJa = Hx + ṗT + νT Cx δx + Hu + νT Cu δu
t0

+(Hp − ẋT)δp(t) + CTδν dt

June 18, 2008

Spr 2008 16.323 9–2

Clean up by defining augmented Hamiltonian •

Ha(x, u, p, t) = g + p T (t)a + νT (t)C

where (see 2–12) �

νi(t)
≥ 0 if Ci = 0 active
= 0 if Ci < 0 inactive

– So that νiCi = 0 ∀ i.

• So necessary conditions for δJa = 0 are that for t ∈ [t0, tf]

ẋ = a(x, u, t)

ṗ = −(Ha)
T
x

(Ha)u = 0

– With appropriate boundary conditions and νiCi(x, u, t) = 0

Complexity here is that typically will have sub-arcs to the solution •
where the inequality constraints are active (so Ci(x, u, t) = 0) and
then not (so νi = 0).
– Transitions between the sub-arcs must be treated as corners that

are at unspecified times - need to impose the equivalent of the
Erdmann-Weirstrass corner conditions for the control problem, as
in Lecture 8.

June 18, 2008

Spr 2008	 Constrained Example 16.323 9–3

•	 Design the control inputs that minimize the cost functional �	 4

min J = −x(4) + u 2(t)dt
u 0

with ẋ = x + u, x(0) = 0, and u(t) ≤ 5.

•	 Form augmented Hamiltonian:

H = u 2 + p(x + u) + ν(u − 5)

•	 Note that, independent of whether the constraint is active or not, we
have that

ṗ = −Hx = −p � p(t) = ce−t

and from transversality BC, know that p(4) = ∂h/∂x = −1, so have
that c = −e4 and thus p(t) = −e4−t

•	 Now let us assume that the control constraint is initially active for
some period of time, then ν ≥ 0, u = 5, and

Hu = 2u + p + ν = 0

so we have that
ν = −10 − p = −10 + e 4−t

– Question: for what values of t will ν ≥ 0?

ν = −10 + e 4−t ≥ 0

→ e 4−t ≥ 10

→ 4 − t ≥ ln(10)

→ 4 − ln(10) ≥ t

– So provided t ≤ tc = 4 − ln(10) then ν ≥ 0 and the assumptions
are consistent.

Now consider the inactive constraint case:
•
1

Hu = 2u + p = 0 � u(t) = − p(t)
2

June 18, 2008

�

�

Spr 2008	 16.323 9–4

•	 The control inputs then are

5 t ≤ tc
u(t) =
 1
2e

4−t
 t ≥ tc

which is continuous at tc.

•	 To finish the solution, find the state in the two arcs x(t) and enforce
continuity at tc, which gives that:

5et − 5 t ≤ tc
4−t + (5 − 25e−4)e

x(t) =
 −
1
4

t)
e
 t ≥ tc

•	 Note that since the corner condition was not specified by a state con

straint, continuity of λ and H at the corner is required – but we did
not need to use that in this solution, it will occur naturally.

June 18, 2008

�	 � � �
�

�

�

Spr 2008	 16.323 9–5

Pontryagin’s Minimum Principle
•	 For an alternate perspective, consider general control problem state

ment on 6–1 (free end time and state). Then on 6–2,

δJa = hx − p T (tf) δxf + htf + H (tf)δtf (9.13)
tf �� �	 �

+ Hx + ṗT δx + Huδu + (Hp − ẋT)δp(t) dt
t0

now assume we have a trajectory that satisfies all other differential
equation and terminal constraints, then all remains is

tf

⇒	δJa =
t0

[Hu(t)δu(t)] dt (9.14)

•	 For the control to be minimizing, need δJa ≥ 0 for all admissible
variations in u (i.e., δu for which Cuδu ≤ 0)
– Equivalently, need δH = Hu(t)δu(t) ≥ 0 for all time and for all

admissible δu

– Gives condition that Hu = 0 if control constraints not active

– However, at the constraint boundary, could have Hu = 0 and
whether we need Hu > 0 or Hu < 0 depends on the direction
(sign) of the admissible δu.

Figure 9.1: Examples of options for δH = Hu(t)δu(t). Left: unconstrained min,
so need Hu = 0. Middle: constraint on left, so at min value, must have δu ≥ 0
⇒ need Hu ≥ 0 so that δH ≥ 0. Right: constraint on right, so at min value, must
have δu ≤ 0 need Hu ≤ 0 so that δH ≥ 0.⇒

June 18, 2008

�	 �

Spr 2008	 16.323 9–6

•	 The requirement that δH ≥ 0 says that δH must be non-improving
to the cost (recall trying to minimize the cost) over the set of possible
δu.
– Can actually state a stronger condition: H must be minimized over

the set of all possible u

•	 Thus for control constrained problems, third necessary condition

Hu = 0

must be replaced with a more general necessary condition

u �(t) = arg min H(x, u, p, t)
u(t)∈U

– So must look at H and explicitly find the minimizing control inputs
given the constraints - not as simple as just solving Hu = 0

– Known as Pontryagin’s Minimum Principle

– Handles “edges” as well, where the admissible values of δu are
“inwards”

•	 PMP is very general and applies to all constrained control problems –
will now apply it to a special case in which the performance and the
constraints are linear in the control variables.

June 18, 2008

�

� �

Spr 2008 16.323 9–7

PMP Example: Control Constraints
• Consider simple system y = G(s)u, G(s) = 1/s2 with |u(t)| ≤ um

– Motion of a rigid body with limited control inputs – can be used to
model many different things

• Want to solve the minimum time-fuel problem
tf

min J = (1 + b|u(t)|)dt
0

– The goal is to drive the state to the origin with minimum cost.

– Typical of many spacecraft problems – |u(t)|dt sums up the fuel
used, as opposed to u2(t)dt that sums up the power used.

• Define x1 = y, x2 = ẏ ⇒ dynamics are ẋ1 = x2, ẋ2 = u

• First consider the response if we apply ±1 as the input. Note:
– If u = 1, x2(t) = t + c1 and

x1(t) = 0.5t2 + c1t + c2 = 0.5(t + c1)
2 + c3 = 0.5x2(t)

2 + c3

– If u = −1, x2(t) = −t + c4 and

x1(t) = −0.5t2 + c4t + c5 = −0.5(t + c4)
2 + c6 = −0.5x2(t)

2 + c6

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

u = +1
u = −1

Figure 9.2: Possible response curves – what is the direction of motion?

June 18, 2008

�

Spr 2008 16.323 9–8

• Hamiltonian for the system is: �� � � � � � � � � 0 1 x1 0
H = 1 + b u + p1 p2 + u| |

0 0 x2 1

= 1 + b|u| + p1x2 + p2u

• First find the equations for the co-state:

ṗ1 = −Hx1 = 0 p1 = c1
xṗ = −HT ⇒

ṗ2 = −Hx2 = −p1

→
p2 = −c1t + c2→

– So p2 is linear in time

• To find optimal control, look at the parts of H that depend on u:

H̃ = b|u| + p2u

– Recall PMP: given constraints, goal is to find u that minimizes
H (or H̃)

– Sum of two functions |u| and u - sign of which depends on sign and
relative size of p2 compared to b > 0

June 18, 2008

Spr 2008 16.323 9–9

• Three cases to consider (plots use um = 1.5):

1. p2 > b > 0 → choose u�(t) = −um

Figure 9.3: b = 1, p2 = 2, so p2 > b > 0
fopt1

2. p2 < −b → choose u�(t) = um

Figure 9.4: b = 1, p2 = −2, so p2 < −b

3. −b < p2 < b → choose u�(t) = 0

Figure 9.5: b = 1, p2 = 1, so −b < p2 < b

June 18, 2008

Spr 2008	 16.323 9–10

•	 The resulting control law is: ⎧ ⎨ −um b < p2(t)
u(t) = ⎩

0 −b < p2(t) < b
um p2(t) < −b

•	 So the control depends on p2(t) - but since it is a linear function of
time, it is only possible to get at most 2 switches
– Also, since ẋ2(t) = u, and since we must stop at tf , then must

have that u = ±um at tf

•	 To complete the solution, impose the boundary conditions (transver

sality condition), with x2(tf) = 0

H(tf) + ht(tf) = 0 → 1 + b|u(tf)| + p2(tf)u(tf) = 0

– If u = um, then 1 + bum + p2(tf)um = 0 implies that

1
p2(tf) = −(b +) < −b

um

which is consistent with the selection rules.

– And if u = −um, then 1 + bum − p2(tf)um = 0 implies that

1
p2(tf) = (b +) > b

um

which is also consistent.

– So the terminal condition does not help us determine if u = ±um,
since it could be either

June 18, 2008

Spr 2008 16.323 9–11

So first look at the case where u(tf) = um. Know that •

p2(t) = c2 − c1t

and p2(tf) = −(b + 1) < −b.
um

– Assume that c1 > 0 so that we get some switching.

Figure 9.6: Possible switching case, but both tf and c1 are unknown at this point.

– Then set p2(t1) = −b to get that t1 = tf − 1/(umc1)

– And p2(t2) = b gives t2 = tf − (2b + 1/um)/c1

Now look at the state response:
•

– Starting at the end: ÿ = um, gives y(t) = um/2t2 + c3t + c4, where
ẏ = y = 0 at tf gives us that c3 = −umtf and c4 = um/2tf

2 , so

y(t) =
um
t2 um

t2 =
um

(t − tf)
2− umtft + f2 2 2

– But since ẏ(t) = umt + c3 = um(t − tf), then
 y(t) =
ẏ(t)2

2um

– State response associated with u = um is in lower right quadrant
of the y/ẏ phase plot

June 18, 2008

�	 �

Spr 2008	 16.323 9–12

•	 Between times t2 –t1, control input is zero ⇒ coasting phase.

– Terminal condition for coast same as the start of the next one:

y(t1) =
u

2
m

(t1 − tf)
2 =

2u

1

mc1
2

and ẏ(t1) = −1/c1

– On a coasting arc, ẏ is a constant (so ẏ(t2) = −1/c1), and thus

y(t2) −
(t1

c

−

1

t2)

2u

1

mc
= 2

1

which gives that

1 1 1	 2b 1
y(t2) = 2 + tf − − (tf − (+))

2umc1 c1 umc1 c1 umc1

1 1 1
= (2b +) = (2b +)ẏ(t2)

2

2um c1
2 2um

• So the first transition occurs along the curve
 y(t) = (2b +
1

2um
) ̇y(t)2

•	 For the first arc, things get a bit more complicated.
Clearly u(t) = −um, with IC y0, ẏ0 so

ẏ(t) = −umt + c5 = −umt + ẏ0

y(t) = −
u

2
m
t2 + c5t + c6 = −

u

2
m
t2 + ẏ0t + y0

– Now project forward to t2

1 2(b + 1/um)
ẏ(t2) = −umt2 + ẏ0 = ẏ(t1) = −

c1
→ c1 =

tf − ẏ0/um
um 2 y(t2) = t2 + ẏ0t2 + y0−	
2

and use these expressions in the quadratic for the switching curve
to solve for c1, t1, t2

June 18, 2008

Spr 2008	 16.323 9–13

•	 The solutions have a very distinctive Bang–Off–Bang pattern
– Two parabolic curves define switching from +um to 0 to −um

Figure 9.7: y0 = 2 ẏ0 = 3 b = 0.75 um = 1.5

•	 Switching control was derived using a detailed evaluation of the state
and costate
– But final result is a switching law that can be written wholly in

terms of the system states.

June 18, 2008

Spr 2008 16.323 9–14

Figure 9.8: y0 = 2 ẏ0 = 3 b = 2 um = 1.5

Figure 9.9: y0 = 2 ẏ0 = 3 b = 0.1 um = 1.5

June 18, 2008

� �

Spr 2008 16.323 9–15

• Clearly get a special result as b → 0, which is the solution to the
minimum time problem
– Control inputs are now just Bang–Bang

– One parabolic curve defines switching from +um to −um

Figure 9.10: Min time: y0 = 2 ẏ0 = 3 b = 0 um = 1.5

• Can show that the switching and final times are given by

t1 = ẏ(0) + y(0) + 0.5ẏ2(0) tf = ẏ(0) + 2 y(0) + 0.5ẏ2(0)

June 18, 2008

Spr 2008 16.323 9–16

• Trade-off: coasting is fuel efficient, but it takes a long time.

10−3 10−2 10−1 100 101
2

4

6

8

10

12

14

T 1, T
2, T

f

b

On

On

Coast

T

1
T

2
T

f
Fuel

Figure 9.11: Summary of switching times for various fuel weights

June 18, 2008

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Spr 2008 16.323 9–17

Min time fuel

% Min time fuel for double integrator

% 16.323 Spring 2008

% Jonathan How

figure(1);clf;%

if jcase==1;y0=2;yd0=3; b=.75;u_m=1.5;% baseline

elseif jcase==2;y0=2;yd0=3; b=2;u_m=1.5;% fuel exp

elseif jcase==3;y0=2;yd0=3; b=.1;u_m=1.5;% fuel cheap

elseif jcase==4;y0=2;yd0=3; b=0;u_m=1.5;% min time

elseif jcase==5;y0=-4;yd0=4; b=1;u_m=1.5;% min time

end

% Tf is unknown - put together the equations to solve for it

alp=(1/2/u_m+2*b) % switching line

% middle of 8--6: t_2 as a ftn of t_f

T2=[1/u_m (2*b+1/u_m)*yd0/u_m]/(2*b+2/u_m);%

% bottom of 8--7: quadratic for y(t_2) in terms of t_2

% converted into quad in t_f

T_f=roots(-u_m/2*conv(T2,T2)+yd0*[0 T2]+[0 0 y0] - ...

alp*conv(-u_m*T2+[0 yd0],-u_m*T2+[0 yd0]));%

t_f=max(T_f);t=[0:.01:t_f]’; %

c_1=(2*b+2/u_m)/(t_f-yd0/u_m);% key parameters for p(t)

c_2=c_1*t_f-(b+1/u_m);% key parameters for p(t)

t_1=t_f-1/(u_m*c_1); t_2=t_f-(2*b+1/u_m)/c_1;%switching times

G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

arc1=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f]’; %

if jcase==4;arc2=[t_2 t_2+1e-6]’;end

[Y1,T1,X1]=lsim(G,-u_m*ones(length(arc1),1),arc1,[y0 yd0]’); %

[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)’); %

[Y3,T3,X3]=lsim(G,u_m*ones(length(arc3),1),arc3,Y2(end,:)’); %

plot(Y1(:,1),Y1(:,2),’Linewidth’,2); hold on%

plot(Y2(:,1),Y2(:,2),’Linewidth’,2); plot(Y3(:,1),Y3(:,2),’Linewidth’,2);%

ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

text(-4,3,’y=-1/(2u_m)(dy/dt)^2’,’Fontsize’,12)%

if jcase ~= 4; text(-5,0,’y=-(1/(2u_m)+2b)(dy/dt)^2’,’Fontsize’,12);end

text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’,’Fontsize’,18);grid;hold off

title([’t_f = ’,mat2str(t_f)],’Fontsize’,12)%

hold on;% plot the switching curves

if jcase ~= 4;kk=[0:.1:5]’; plot(-alp*kk.^2,kk,’k--’,’Linewidth’,2);plot(alp*kk.^2,-kk,’k--’,’Linewidth’,2);end

kk=[0:.1:5]’;plot(-(1/(2*u_m))*kk.^2,kk,’k--’,’Linewidth’,2);plot((1/(2*u_m))*kk.^2,-kk,’k--’,’Linewidth’,2);%

hold off;axis([-4 4 -4 4]/4*6);

figure(2);p2=c_2-c_1*t;%

plot(t,p2,’Linewidth’,4);%

hold on; plot([0 max(t)],[b b],’k--’,’Linewidth’,2);hold off; %

hold on; plot([0 max(t)],-[b b],’k--’,’Linewidth’,2);hold off; %

hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_1+.1,1.5,’t_1’,’Fontsize’,12)%

hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_2+.1,-1.5,’t_2’,’Fontsize’,12)%

title([’b = ’,mat2str(b),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%

ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

text(1,b+.1,’b’,’Fontsize’,12);text(1,-b+.1,’-b’,’Fontsize’,12)%

axis([0 t_f -3 3]);grid on; %

%

if jcase==1

print -f1 -dpng -r300 fopt5a.png;;print -f2 -dpng -r300 fopt5b.png;

elseif jcase==2

print -f1 -dpng -r300 fopt6a.png;print -f2 -dpng -r300 fopt6b.png;

elseif jcase==3

print -f1 -dpng -r300 fopt7a.png;print -f2 -dpng -r300 fopt7b.png;

elseif jcase==4

print -f1 -dpng -r300 fopt8a.png;print -f2 -dpng -r300 fopt8b.png;

end

June 18, 2008

�

�	 �
�

Spr 2008	 16.323 9–18 Minimum Time Problems

•	 Can repeat this analysis for minimum time and energy problems using

the PMP
– Issue is that the process of a developing a solution by analytic con

struction is laborious and very hard to extend to anything nonlinear
and/or linear with more than 2 states

•	 Need to revisit the problem statement and develop a new approach.
•	 Goal: develop the control input sequence

Mi
− ≤ ui(t) ≤ Mi

+

that drives the system (nonlinear, but linear control inputs)

ẋ = A(x, t) + B(x, t)u

from an arbitrary state x0 to the origin to minimize maneuver time
tf

min J = dt
t0

Solution: form the Hamiltonian •

H	 = 1 + p T (t){A(x, t) + B(x, t)u}

=	 1 + p T (t){A(x, t) + b1(x, t) b2(x, t) · · · bm(x, t) u}
m

= 1 + p T (t)A(x, t) + p T (t)bi(x, t)ui(t)

i=1

Now use the PMP: select ui(t) to minimize H, which gives •	 ⎧ ⎨ Mi
+ if pT (t)bi(x, t) < 0

ui(t) = ⎩ Mi
− if pT (t)bi(x, t) > 0

which gives us the expected Bang-Bang control

Then solve for the costate
•	 � �T

∂A ∂B
ṗ = −Hx

T = − + u p
∂x ∂x

– Could be very complicated for a nonlinear system.

June 18, 2008

•	 �

Spr 2008	 16.323 9–19

Note: shown how to pick u(t) given that pT (t)bi(x, t) = 0

– Not obvious what to do if pT (t)bi(x, t) = 0 for some finite time
interval.

– In this case the coefficient of ui(t) is zero, and PMP provides no
information on how to pick the control inputs.

– Will analyze this singular condition in more detail later.

• To develop further insights, restrict the system model further to LTI,
so that

A(x, t) Ax B(x, t) B→	 →

– Assume that [A,B] controllable

– Set Mi
+ = −Mi

− = umi

•	 Just showed that if a solution exists, it is Bang-Bang

– Existence: if R(λi(A)) ≤ 0, then an optimal control exists that
transfers any initial state x0 to the origin.

� Must eliminate unstable plants from this statement because the
control is bounded.

– Uniqueness: If an extremal control exists (i.e. solves the necessary
condition and satisfies the boundary conditions), then it is unique.

� Satisfaction of the PMP is both necessary and sufficient for time-

optimal control of a LTI system.

•	 If the eigenvalues of A are all real, and a unique optimal control exists,
then each control input can switch at most n − 1 times.
– Still need to find the costates to determine the switching times –

but much easier in the linear case.

June 18, 2008

�

�

� � �

Spr 2008 16.323 9–20 Min Fuel Problems
• Goal: develop the control input sequence

Mi
− ≤ ui(t) ≤ Mi

+

that drives the system

ẋ = A(x, t) + B(x, t)u

from an arbitrary state x0 to the origin in a fixed time tf and optimizes
the cost � m
tf �

min J = ci|ui(t)|dt

t0 i=1

Solution: form the Hamiltonian •
m

H = ci|ui(t)| + p T (t){A(x, t) + B(x, t)u}
i=1 �m m

= ci|ui(t)| + p T (t)A(x, t) + p T (t)bi(x, t)ui(t)
i=1 i=1
m

= ci|ui(t)| + p T (t)bi(x, t)ui(t) + p T (t)A(x, t)
i=1

• Use the PMP, which requires that we select ui(t) to ensure that for
all admissible ui(t)

m m
�� � �� �

ci|ui�(t)| + p T (t)bi(x, t)ui
�(t) ≤ ci|ui(t)| + p T (t)bi(x, t)ui(t)

i=1 i=1

• If the components of u are independent, then can just look at

ci|u�i (t)| + p T (t)bi(x, t)u
�
i (t) ≤ ci|ui(t)| + p T (t)bi(x, t)ui(t)

– As before, this boils down to a comparison of ci and pT (t)bi

– Resulting control law is: ⎧ ⎨ Mi
− if ci < pT (t)bi

u�i (t) = ⎩
0 if −ci < pT (t)bi < ci
Mi

+ if pT (t)bi < −ci

June 18, 2008

� � � �

�

Spr 2008	 Example: 9–1 16.323 9–21

0 1 0
Consider G(s) = 1/s2 A = B = •	 ⇒

0 0 1

tf

min J = |u(t)|dt
t0

– Drive state to the origin with tf fixed.

•	 Gives H = |u| + p1x2 + p2u
– Final control u(tf) = um p2(tf) < −1 p2(t) = c2 − c1t⇒

•	 As before, integrate EOM forward from 0 to t2 using −um, then from
t2 to t1 using u = 0, and from t1 to tf using um

– Apply terminal conditions and solve for c1 and c2

Figure 9.12: Min Fuel for varying final
times

Figure 9.13: Min fuel for fixed final
time, varying IC’s

•	 First switch depends on IC and tf ⇒ no clean closed-form solution for
switching curve
– Larger tf leads to longer coast.

– For given tf , there is a limit to the IC from which we can reach the
origin.

June 18, 2008

�

� �	 �

� �	 �

Spr 2008	 16.323 9–22

•	 If specified completion time tf > Tmin = ẏ(0) + 2 y(0) + 0.5ẏ2(0),
then

t2 = 0.5 (ẏ(0) + tf) − (ẏ(0) − tf)2 − (4y(0) + 2 ̇y2(0))

t1 = 0.5 (ẏ(0) + tf) + (ẏ(0) − tf)2 − (4y(0) + 2 ̇y2(0))

June 18, 2008

�

• � �

� �

Spr 2008 Minimum Energy Problem16.323 9–23

Goal: for a fixed final time and terminal constraints •

1 tf

min J = u TRu dt R > 0
2 0

• Again use special dynamics:

ẋ = A(x, t) + B(x, t)u

H =
1
u TRu + p T { A(x, t) + B(x, t)u}

2
• Obviously with no constraints on u, solve Hu = 0, to get

u = −R−1BT p(t)

But with bounded controls, must solve:

1
u �(t) = arg min u TRu + p TB(x, t)u

u(t)∈U 2

which is a constrained quadratic program in general
– However, for diagonal R, the effects of the controls are independent

m

u �(t) = arg min
� 1

Riiu 2
i + p T biui

u(t)∈U
i=1

2

– In the unconstrained case, each ui(t) can easily be determined by
minimizing

1 2

2
Riiui + p T biui → ũi = −Rii

−1 p T bi

• The resulting controller inputs are ui(t) = sat(ũi(t)) ⎧ ⎨ Mi
− if ũi < Mi

−

ui(t) = ũi if Mi
− < ũi < Mi

+ ⎩
Mi

+ if Mi
+ < ũi

June 18, 2008

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Spr 2008 16.323 9–24

Min Fuel

% Min fuel for double integrator

% 16.323 Spring 2008

% Jonathan How

%

c=1;

t=[0:.01:t_f];

alp=(1/2/u_m) % switching line

T_2=roots([-u_m/2 yd0 y0] + conv([-u_m yd0],[-2 t_f+yd0/u_m])-alp*conv([-u_m yd0],[-u_m yd0]));%

t_2=min(T_2);

yd2=-u_m*t_2+yd0;yd1=yd2;

t_1=t_f+yd1/u_m;

c_1=2/(t_1-t_2);c_2=c_1*t_1-1;

G=ss([0 1;0 0],[0 1]’,eye(2),zeros(2,1));

arc1=[0:.001:t_2]’; arc2=[t_2:.001:t_1]’;arc3=[t_1:.001:t_f]’; %

[Y1,T1,X1]=lsim(G,-u_m*ones(length(arc1),1),arc1,[y0 yd0]’); %

[Y2,T2,X2]=lsim(G,0*ones(length(arc2),1),arc2,Y1(end,:)’); %

[Y3,T3,X3]=lsim(G,u_m*ones(length(arc3),1),arc3,Y2(end,:)’); %

plot(Y1(:,1),Y1(:,2),zzz,’Linewidth’,2); hold on%

plot(Y2(:,1),Y2(:,2),zzz,’Linewidth’,2); plot(Y3(:,1),Y3(:,2),zzz,’Linewidth’,2);%

ylabel(’dy/dt’,’Fontsize’,18); xlabel(’y(t)’,’Fontsize’,12);%

text(-4,3,’y=-1/(2u_m)(dy/dt)^2’,’Fontsize’,12)%

text(4,4,’-’,’Fontsize’,18);text(-4,-4,’+’,’Fontsize’,18);grid on;hold off

title([’t_f = ’,mat2str(t_f)],’Fontsize’,12)%

hold on;% plot the switching curves

kk=[0:.1:8]’; plot(-alp*kk.^2,kk,’k--’);plot(alp*kk.^2,-kk,’k--’);

hold off;axis([-4 4 -4 4]/4*6);

figure(2);%

p2=c_2-c_1*t;%

plot(t,p2,’Linewidth’,4);%

hold on; plot([0 t_f],[c c],’k--’,’Linewidth’,2);hold off; %

hold on; plot([0 t_f],-[c c],’k--’,’Linewidth’,2);hold off; %

hold on; plot([t_1 t_1],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_1+.1,1.5,’t_1’,’Fontsize’,12)%

hold on; plot([t_2 t_2],[-2 2],’k:’,’Linewidth’,3);hold off; %

text(t_2+.1,-1.5,’t_2’,’Fontsize’,12)%

title([’c = ’,mat2str(c),’ u_m = ’,mat2str(u_m)],’Fontsize’,12);%

ylabel(’p_2(t)’,’Fontsize’,12); xlabel(’t’,’Fontsize’,12);%

text(1,c+.1,’c’,’Fontsize’,12);text(1,-c+.1,’-c’,’Fontsize’,12)%

axis([0 t_f -3 3]);grid on; %

return

figure(1);clf

y0=2;yd0=3;t_f=5.8;u_m=1.5;zzz=’-’;minu;

figure(1);hold on

y0=2;yd0=3;t_f=16;u_m=1.5;zzz=’k--’;minu;

figure(1);hold on

y0=2;yd0=3;t_f=32;u_m=1.5;zzz=’r:’;minu;

figure(1);

axis([-6 6 -6 6])

legend(’5.8’,’16’,’32’)

print -f1 -dpng -r300 uopt1.png;

figure(1);clf

y0=2;yd0=2;t_f=8;u_m=1.5;zzz=’-’;minu

figure(1);hold on

y0=6;yd0=2;t_f=8;u_m=1.5;zzz=’k--’;minu

figure(1);hold on

y0=15.3;yd0=2;t_f=8;u_m=1.5;zzz=’r:’;minu

figure(1);axis([-2 25 -6 6])

print -f1 -dpng -r300 uopt2.png;

June 18, 2008

	16.323: Principles of Optimal Control
	Lecture 9: Constrained Optimal Control
	Constrained Optimal Control
	Pontryagin's Minimum Principle
	Fig: Examples of options for H = Hu(t) u(t). Left: unconstrained min, so need Hu=0. Middle: constraint on left, so at min value, must have u 0 blue need Hu 0 so that H 0. Right: constraint on right, so at min value, must have u 0 blue need Hu 0 so that H 0.

	PMP Example: Control Constraints
	Fig: Possible response curves -- what is the direction of motion?
	Fig: b=1, p2=-2, so p2 < -b
	Fig: b=1, p2=1, so -b < p2 < b
	Fig: Possible switching case, but both tf and c1 are unknown at this point.
	Fig: y0=2 0=3 b=0.75 um=1.5
	Fig: y0=2 0=3 b=2 um=1.5
	Fig: y0=2 0=3 b=0.1 um=1.5
	Fig: Min time: y0=2 0=3 b=0 um=1.5
	Fig: Summary of switching times for various fuel weights

	Code: Min time fuel
	Minimum Time Problems
	Min Fuel Problems
	Example: 9--1
	Fig: Min Fuel for varying final times
	Fig: Min fuel for fixed final time, varying IC's

	Minimum Energy Problem
	Code: Min Fuel

