MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.323 Lecture 8

Properties of Optimal Control Solution

Bryson and Ho - Section 3.5 and Kirk - Section 4.4

Spr 2008

Properties of Optimal Control

- If $\mathbf{g}=\mathbf{g}(\mathbf{x}, \mathbf{u})$ and $\mathbf{a}=\mathbf{a}(\mathbf{x}, \mathbf{u})$ do not explicitly depend on time t, then the Hamiltonian H is at least piecewise constant.

$$
\begin{equation*}
H=g(\mathbf{x}, \mathbf{u})+\mathbf{p}^{T} \mathbf{a}(\mathbf{x}, \mathbf{u}) \tag{8.1}
\end{equation*}
$$

then

$$
\begin{align*}
\frac{d H}{d t} & =\frac{\partial H^{0}}{\partial t}+\left(\frac{\partial H}{\partial \mathbf{x}}\right) \frac{d \mathbf{x}}{d t}+\left(\frac{\partial H}{\partial \mathbf{u}}\right) \frac{d \mathbf{u}}{d t}+\left(\frac{\partial H}{\partial \mathbf{p}}\right) \frac{d \mathbf{p}}{d t} \tag{8.2}\\
& =H_{\mathbf{x}} \mathbf{a}+H_{\mathbf{u}} \dot{\mathbf{u}}+H_{\mathbf{p}} \dot{\mathbf{p}} \tag{8.3}
\end{align*}
$$

Now use the necessary conditions:

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{a}=H_{\mathbf{p}}^{T} \tag{8.4}\\
& \dot{\mathbf{p}}=-H_{\mathbf{x}}^{T} \tag{8.5}
\end{align*}
$$

to get that

$$
\frac{d H}{d t}=-\dot{\mathbf{p}}^{T} \mathbf{a}+\mathbf{a}^{T} \dot{\mathbf{p}}+H_{\mathbf{u}} \dot{\mathbf{u}}=H_{\mathbf{u}} \dot{\mathbf{u}}
$$

- Third necessary condition requires $H_{\mathbf{u}}=0$, so clearly $\frac{d H}{d t}=0$, which suggests H is a constant,
- Note that it might be possible for the value of this constant to change at a discontinuity of \mathbf{u}, since then $\dot{\mathbf{u}}$ would be infinite, and $0 \cdot \infty$ is not defined.
- Thus H is at least piecewise constant
- For free final time problems, transversality condition gives,

$$
h_{t}+H\left(t_{f}\right)=0
$$

- If h is not a function of time, then $h_{t}=0$ so $H\left(t_{f}\right)=0$
- With no jumps in \mathbf{u}, H is constant $\Rightarrow H=0$ for all time.
- If solution has a corner that is not induced by an intermediate state variable constraint, then H, \mathbf{p}, and $H_{\mathbf{u}}$ are all continuous across the corner.
- To see, this, write augmented cost functional on 6-1 in the form

$$
J=\text { terminal terms }+\int_{t_{0}}^{t_{f}}\left(\mathbf{g}+\mathbf{p}^{T}(\mathbf{a}-\dot{\mathbf{x}})\right) d t
$$

and recall definition of Hamiltonian $H=\mathbf{g}+\mathbf{p}^{T} \mathbf{a}$, so that

$$
J=\text { terminal terms }+\int_{t_{0}}^{t_{f}}\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right) d t
$$

- Looks similar to the classical form analyzed on 5-16

$$
\tilde{J}=\int_{t_{0}}^{t_{f}} g(x, \dot{x}, t) d t
$$

which led to two Weierstrass-Erdmann corner conditions

$$
\begin{align*}
g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right) & =g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right) \tag{8.6}\\
g\left(t_{1}^{-}\right)-g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right) \dot{\mathbf{x}}\left(t_{1}^{-}\right) & =g\left(t_{1}^{+}\right)-g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right) \dot{\mathbf{x}}\left(t_{1}^{+}\right) \tag{8.7}
\end{align*}
$$

- With $g(x, \dot{x}, t) \Rightarrow H-\mathbf{p}^{T} \dot{\mathbf{x}}$, equivalent continuity conditions are:

$$
\frac{\partial\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)}{\partial \dot{\mathbf{x}}}=-\mathbf{p}^{T} \quad \text { must be cts at corner }
$$

and

$$
\begin{align*}
\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right) & -\frac{\partial\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)}{\partial \dot{\mathbf{x}}} \dot{\mathbf{x}} \\
& =\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)+\mathbf{p}^{T} \dot{\mathbf{x}} \\
& =H \quad \text { must be cts at corner } \tag{8.8}
\end{align*}
$$

- So both $\mathbf{p}(t)$ and H must be continuous across a corner that is not induced by a state variable equality/inequality constraint.
- Consider what happens with an interior point state constraint (Bryson, section 3.5) of the form that

$$
\mathbf{N}\left(\mathbf{x}\left(t_{1}\right), t_{1}\right)=0
$$

where $t_{0}<t_{1}<t_{f}$ and \mathbf{N} is a vector of $q<n$ constraints.

- Assume that $\mathbf{x}\left(t_{0}\right), \mathbf{x}\left(t_{f}\right), t_{0}$, and t_{f} all specified.
- Augment constraint to cost (6-1) using multiplier $\boldsymbol{\pi}$

$$
J_{a}=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\boldsymbol{\pi}^{T} \mathbf{N}+\int_{t_{0}}^{t_{f}}\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right) d t
$$

- Proceed as before with the corner conditions (5-15), and split cost integral into 2 parts

$$
\int_{t_{0}}^{t_{f}} \Rightarrow \int_{t_{0}}^{t_{1}}+\int_{t_{1}}^{t_{f}}
$$

and form the variation (drop terms associated with t_{0} and t_{f}):

$$
\begin{align*}
\delta J_{a} & =\mathbf{N}^{T}\left(t_{1}\right) \delta \boldsymbol{\pi}+\boldsymbol{\pi}^{T}\left(\mathbf{N}_{\mathbf{x}}\left(t_{1}\right) \delta \mathbf{x}_{1}+\mathbf{N}_{t}\left(t_{1}\right) \delta t_{1}\right) \tag{8.9}\\
& +\int_{t_{0}}^{t_{1}}\left(H_{\mathbf{x}} \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}-\mathbf{p}^{T} \delta \dot{\mathbf{x}}\right) d t \\
& +\int_{t_{1}}^{t_{f}}\left(H_{\mathbf{x}} \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}-\mathbf{p}^{T} \delta \dot{\mathbf{x}}\right) d t \\
& +\left.\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)\right|^{t_{1}^{-}} \delta t_{1}+\left.\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)\right|_{t_{1}^{+}} \delta t_{1}
\end{align*}
$$

Collect:

$$
\begin{align*}
& =\mathbf{N}^{T}\left(t_{1}\right) \delta \boldsymbol{\pi}+\boldsymbol{\pi}^{T}\left(\mathbf{N}_{\mathbf{x}}\left(t_{1}\right) \delta \mathbf{x}_{1}+\mathbf{N}_{t}\left(t_{1}\right) \delta t_{1}\right) \tag{8.10}\\
& +\int_{t_{0}}^{t_{1}}\left(H_{\mathbf{x}} \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}-\mathbf{p}^{T} \delta \dot{\mathbf{x}}\right) d t \\
& +\int_{t_{1}}^{t_{f}}\left(H_{\mathbf{x}} \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}-\mathbf{p}^{T} \delta \dot{\mathbf{x}}\right) d t \\
& +\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)\left(t_{1}^{-}\right) \delta t_{1}-\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)\left(t_{1}^{+}\right) \delta t_{1}
\end{align*}
$$

- On 6-2 showed that the IBP will give:

$$
\begin{aligned}
& -\int_{t_{0}}^{t_{1}} \mathbf{p}^{T} \delta \dot{\mathbf{x}} d t=-\mathbf{p}^{T}\left(t_{1}^{-}\right)\left(\delta \mathbf{x}_{1}-\dot{\mathbf{x}}\left(t_{1}^{-}\right) \delta t_{1}\right)+\int_{t_{0}}^{t_{1}} \dot{\mathbf{p}}^{T} \delta \mathbf{x} d t \\
& -\int_{t_{1}}^{t_{f}} \mathbf{p}^{T} \delta \dot{\mathbf{x}} d t=\mathbf{p}^{T}\left(t_{1}^{+}\right)\left(\delta \mathbf{x}_{1}-\dot{\mathbf{x}}\left(t_{1}^{+}\right) \delta t_{1}\right)+\int_{t_{1}}^{t_{f}} \dot{\mathbf{p}}^{T} \delta \mathbf{x} d t
\end{aligned}
$$

- Substitute into (13) to get

$$
\begin{align*}
\delta J_{a} & =\mathbf{N}^{T}\left(t_{1}\right) \delta \boldsymbol{\pi}+\boldsymbol{\pi}^{T}\left(\mathbf{N}_{\mathbf{x}}\left(t_{1}\right) \delta \mathbf{x}_{1}+\mathbf{N}_{t}\left(t_{1}\right) \delta t_{1}\right) \tag{8.11}\\
& +\int_{t_{0}}^{t_{f}}\left(\left(H_{\mathbf{x}}+\dot{\mathbf{p}}^{T}\right) \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}\right) d t \\
& +\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)\left(t_{1}^{-}\right) \delta t_{1}-\left(H-\mathbf{p}^{T} \dot{\mathbf{x}}\right)\left(t_{1}^{+}\right) \delta t_{1} \\
& -\mathbf{p}^{T}\left(t_{1}^{-}\right)\left(\delta \mathbf{x}_{1}-\dot{\mathbf{x}}\left(t_{1}^{-}\right) \delta t_{1}\right)+\mathbf{p}^{T}\left(t_{1}^{+}\right)\left(\delta \mathbf{x}_{1}-\dot{\mathbf{x}}\left(t_{1}^{+}\right) \delta t_{1}\right)
\end{align*}
$$

- Rearrange and cancel terms

$$
\begin{align*}
\delta J_{a} & =\mathbf{N}^{T}\left(t_{1}\right) \delta \boldsymbol{\pi}+\int_{t_{0}}^{t_{f}}\left(\left(H_{\mathbf{x}}+\dot{\mathbf{p}}^{T}\right) \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+\left(H_{\mathbf{p}}-\dot{\mathbf{x}}^{T}\right) \delta \mathbf{p}\right) d t \\
& +\left[\mathbf{p}^{T}\left(t_{1}^{+}\right)-\mathbf{p}^{T}\left(t_{1}^{-}\right)+\boldsymbol{\pi}^{T} \mathbf{N}_{\mathbf{x}}\left(t_{1}\right)\right] \delta \mathbf{x}_{1} \tag{8.12}\\
& +\left[H\left(t_{1}^{-}\right)-H\left(t_{1}^{+}\right)+\boldsymbol{\pi}^{T} \mathbf{N}_{t}\left(t_{1}\right)\right] \delta t_{1}
\end{align*}
$$

- So choose $H\left(t_{1}^{-}\right) \& H\left(t_{1}^{+}\right)$and $\mathbf{p}^{T}\left(t_{1}^{-}\right) \& \mathbf{p}^{T}\left(t_{1}^{+}\right)$to ensure that the coefficients of $\delta \mathbf{x}_{1}$ and t_{1} vanish in (15), giving:

$$
\begin{aligned}
\mathbf{p}^{T}\left(t_{1}^{-}\right) & =\mathbf{p}^{T}\left(t_{1}^{+}\right)+\boldsymbol{\pi}^{T} \mathbf{N}_{\mathbf{x}}\left(t_{1}\right) \\
H\left(t_{1}^{-}\right) & =H\left(t_{1}^{+}\right)-\boldsymbol{\pi}^{T} \mathbf{N}_{t}\left(t_{1}\right)
\end{aligned}
$$

- These explicitly show that $\mathbf{p}\left(t_{1}\right)$ and $H\left(t_{1}\right)$ are discontinuous across the state constraint induced corner, but $H_{\mathbf{u}}$ will be continuous.

