MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.323 Lecture 6

Calculus of Variations applied to Optimal Control

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{a}(\mathbf{x}, \mathbf{u}, t) \\
\dot{\mathbf{p}} & =-H_{\mathbf{x}}^{T} \\
H_{\mathbf{u}} & =0
\end{aligned}
$$

- Are now ready to tackle the optimal control problem
- Start with simple terminal constraints

$$
J=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

with the system dynamics

$$
\dot{\mathbf{x}}(t)=\mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

$-t_{0}, \mathbf{x}\left(t_{0}\right)$ fixed
$-t_{f}$ free
$-\mathbf{x}\left(t_{f}\right)$ are fixed or free by element

- Note that this looks a bit different because we have $\mathbf{u}(t)$ in the integrand, but consider that with a simple substitution, we get

$$
\tilde{g}(\mathbf{x}, \dot{\mathbf{x}}, t) \xrightarrow{\dot{\mathbf{x}}=\mathbf{a}(\mathbf{x}, \mathbf{u}, t)} \hat{g}(\mathbf{x}, \mathbf{u}, t)
$$

- Note that the differential equation of the dynamics acts as a constraint that we must adjoin using a Lagrange multiplier, as before:

$$
J_{a}=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}}\left[g(\mathbf{x}(t), \mathbf{u}(t), t)+\mathbf{p}^{T}\{\mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t)-\dot{\mathbf{x}}\}\right] d t
$$

- Find the variation: ${ }^{10}$

$$
\begin{aligned}
\delta J_{a}= & h_{\mathbf{x}} \delta \mathbf{x}_{f}+h_{t_{f}} \delta t_{f}+\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}} \delta \mathbf{x}+g_{\mathbf{u}} \delta \mathbf{u}+(\mathbf{a}-\dot{\mathbf{x}})^{T} \delta \mathbf{p}(t)\right. \\
& \left.+\mathbf{p}^{T}(t)\left\{\mathbf{a}_{\mathbf{x}} \delta \mathbf{x}+\mathbf{a}_{\mathbf{u}} \delta \mathbf{u}-\delta \dot{\mathbf{x}}\right\}\right] d t+\left[g+\mathbf{p}^{T}(\mathbf{a}-\dot{\mathbf{x}})\right]\left(t_{f}\right) \delta t_{f}
\end{aligned}
$$

- Clean this up by defining the Hamiltonian: (See 4-4)

$$
H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t)=g(\mathbf{x}(t), \mathbf{u}(t), t)+\mathbf{p}^{T}(t) \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

[^0]- Then

$$
\begin{aligned}
\delta J_{a}= & h_{\mathbf{x}} \delta \mathbf{x}_{f}+\left[h_{t_{f}}+g+\mathbf{p}^{T}(\mathbf{a}-\dot{\mathbf{x}})\right]\left(t_{f}\right) \delta t_{f} \\
& +\int_{t_{0}}^{t_{f}}\left[H_{\mathbf{x}} \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+(\mathbf{a}-\dot{\mathbf{x}})^{T} \delta \mathbf{p}(t)-\mathbf{p}^{T}(t) \delta \dot{\mathbf{x}}\right] d t
\end{aligned}
$$

- To proceed, note that by integrating by parts ${ }^{11}$ we get:

$$
\begin{aligned}
-\int_{t_{0}}^{t_{f}} \mathbf{p}^{T}(t) \delta \dot{\mathbf{x}} d t & =-\int_{t_{0}}^{t_{f}} \mathbf{p}^{T}(t) d \delta \mathbf{x} \\
& =-\left.\mathbf{p}^{T} \delta \mathbf{x}\right|_{t_{0}} ^{t_{f}}+\int_{t_{0}}^{t_{f}}\left(\frac{d \mathbf{p}(t)}{d t}\right)^{T} \delta \mathbf{x} d t \\
& =-\mathbf{p}^{T}\left(t_{f}\right) \delta \mathbf{x}\left(t_{f}\right)+\int_{t_{0}}^{t_{f}} \dot{\mathbf{p}}^{T}(t) \delta \mathbf{x} d t \\
& =-\mathbf{p}^{T}\left(t_{f}\right)\left(\delta \mathbf{x}_{f}-\dot{\mathbf{x}}\left(t_{f}\right) \delta t_{f}\right)+\int_{t_{0}}^{t_{f}} \dot{\mathbf{p}}^{T}(t) \delta \mathbf{x} d t
\end{aligned}
$$

- So now can rewrite the variation as:

$$
\begin{aligned}
\delta J_{a}= & h_{\mathbf{x}} \delta \mathbf{x}_{f}+\left[h_{t_{f}}+g+\mathbf{p}^{T}(\mathbf{a}-\dot{\mathbf{x}})\right]\left(t_{f}\right) \delta t_{f} \\
& +\int_{t_{0}}^{t_{f}}\left[H_{\mathbf{x}} \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+(\mathbf{a}-\dot{\mathbf{x}})^{T} \delta \mathbf{p}(t)\right] d t-\int_{t_{0}}^{t_{f}} \mathbf{p}^{T}(t) \delta \dot{\mathbf{x}} d t \\
= & \left(h_{\mathbf{x}}-\mathbf{p}^{T}\left(t_{f}\right)\right) \delta \mathbf{x}_{f}+\left[h_{t_{f}}+g+\mathbf{p}^{T}(\mathbf{a}-\dot{\mathbf{x}})+\mathbf{p}^{T} \dot{\mathbf{x}}\right]\left(t_{f}\right) \delta t_{f} \\
& +\int_{t_{0}}^{t_{f}}\left[\left(H_{\mathbf{x}}+\dot{\mathbf{p}}^{T}\right) \delta \mathbf{x}+H_{\mathbf{u}} \delta \mathbf{u}+(\mathbf{a}-\dot{\mathbf{x}})^{T} \delta \mathbf{p}(t)\right] d t
\end{aligned}
$$

[^1]- So necessary conditions for $\delta J_{a}=0$ are that for $t \in\left[t_{0}, t_{f}\right]$

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{a}(\mathbf{x}, \mathbf{u}, t) & & (\operatorname{dim} n) \\
\dot{\mathbf{p}} & =-H_{\mathbf{x}}^{T} & & (\operatorname{dim} n) \\
H_{\mathbf{u}} & =0 & & (\operatorname{dim} m)
\end{aligned}
$$

- With the boundary condition (lost if t_{f} is fixed) that

$$
h_{t_{f}}+g+\mathbf{p}^{T} \mathbf{a}=h_{t_{f}}+H\left(t_{f}\right)=0
$$

- Add the boundary constraints that $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}(\operatorname{dim} \mathrm{n})$
- If $\mathbf{x}_{i}\left(t_{f}\right)$ is fixed, then $\mathbf{x}_{i}\left(t_{f}\right)=x_{i_{f}}$
- If $\mathbf{x}_{i}\left(t_{f}\right)$ is free, then $\mathbf{p}_{i}\left(t_{f}\right)=\frac{\partial h}{\partial x_{i}}\left(t_{f}\right)$ for a total ($\operatorname{dim} \mathrm{n}$)
- These necessary conditions have $2 n$ differential and m algebraic equations with $2 n+1$ unknowns (if t_{f} free), found by imposing the $(2 n+1)$ boundary conditions.
- Note the symmetry in the differential equations:

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{a}(\mathbf{x}, \mathbf{u}, t)=\left(\frac{\partial H}{\partial \mathbf{p}}\right)^{T} \\
\dot{\mathbf{p}} & =-\left(\frac{\partial H}{\partial \mathbf{x}}\right)^{T}=-\frac{\partial\left(g+\mathbf{p}^{T} \mathbf{a}\right)^{T}}{\partial \mathbf{x}} \\
& =-\left(\frac{\partial \mathbf{a}}{\partial \mathbf{x}}\right)^{T} \mathbf{p}-\left(\frac{\partial g}{\partial \mathbf{x}}\right)^{T}
\end{aligned}
$$

- So the dynamics of \mathbf{p}, called the costate, are linearized system dynamics (negative transpose - dual)

$$
\left(\frac{\partial \mathbf{a}}{\partial \mathbf{x}}\right)=\left[\begin{array}{ccc}
\frac{\partial a_{1}}{\partial x_{1}} & \cdots & \frac{\partial a_{1}}{\partial x_{n}} \\
\frac{\partial a_{n}}{\partial x_{1}} & \cdots & \frac{\partial a_{n}}{\partial x_{n}}
\end{array}\right]
$$

- These necessary conditions are extremely important, and we will be using them for the rest of the term.

Control with General Terminal Conditions

- Can develop similar conditions in the case of more general terminal conditions with t_{f} free and

$$
\mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=0
$$

- Follow the same procedure on 6-1 using the insights provided on 5-21 (using the g_{a} form on 5-20) to form

$$
w\left(\mathbf{x}\left(t_{f}\right), \boldsymbol{\nu}, t_{f}\right)=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\boldsymbol{\nu}^{T} \mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)
$$

- Work through the math, and get the necessary conditions are

$$
\begin{align*}
\dot{\mathbf{x}} & =\mathbf{a}(\mathbf{x}, \mathbf{u}, t) & & (\operatorname{dim} n) \\
\dot{\mathbf{p}} & =-H_{\mathbf{x}}^{T} & & (\operatorname{dim} n) \\
H_{\mathbf{u}} & =0 & & (\operatorname{dim} m) \tag{6.24}
\end{align*}
$$

- With the boundary condition (lost if t_{f} fixed)

$$
H\left(t_{f}\right)+w_{t_{f}}\left(t_{f}\right)=0
$$

- And $\mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=0$, with $\mathbf{x}\left(t_{0}\right)$ and t_{0} given.
- With (since $\mathbf{x}\left(t_{f}\right)$ is not directly given)

$$
\mathbf{p}\left(t_{f}\right)=\left[\frac{\partial w}{\partial \mathbf{x}}\left(t_{f}\right)\right]^{T}
$$

- Collapses to form on 6-3 if \mathbf{m} not present - i.e., does not constrain $\mathbf{x}\left(t_{f}\right)$
- Simple double integrator system starting at $y(0)=10, \dot{y}(0)=0$, must drive to origin $y\left(t_{f}\right)=\dot{y}\left(t_{f}\right)=0$ to minimize the cost $(b>0)$

$$
J=\frac{1}{2} \alpha t_{f}^{2}+\frac{1}{2} \int_{0}^{t_{f}} b u^{2}(t) d t
$$

- Define the dynamics with $x_{1}=y, x_{2}=\dot{y}$ so that

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+B u(t) \quad A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- With $\mathbf{p}(t)=\left[\begin{array}{ll}p_{1}(t) & p_{2}(t)\end{array}\right]^{T}$, define the Hamiltonian

$$
H=g+\mathbf{p}^{T}(t) \mathbf{a}=\frac{1}{2} b u^{2}+\mathbf{p}^{T}(t)(A \mathbf{x}(t)+B u(t))
$$

- The necessary conditions are then that:

$$
\begin{array}{cl}
\dot{\mathbf{p}}=-H_{\mathbf{x}}^{T}, \quad \rightarrow & \dot{p}_{1}=-\frac{\partial H}{\partial x_{1}}=0 \rightarrow p_{1}(t)=c_{1} \\
\dot{p}_{2}=-\frac{\partial H}{\partial x_{2}}=-p_{1} \rightarrow p_{2}(t)=-c_{1} t+c_{2} \\
H_{u}=b u+p_{2}=0 & \rightarrow u=-\frac{p_{2}}{b}=-\frac{c_{2}}{b}+\frac{c_{1}}{b} t
\end{array}
$$

- Now impose the boundary conditions:

$$
\begin{aligned}
H\left(t_{f}\right)+h_{t}\left(t_{f}\right) & =\frac{1}{2} b u^{2}\left(t_{f}\right)+p_{1}\left(t_{f}\right) x_{2}\left(t_{f}\right)+p_{2}\left(t_{f}\right) u\left(t_{f}\right)+\alpha t_{f}=0 \\
& =\frac{1}{2} b u^{2}\left(t_{f}\right)+\left(-b u\left(t_{f}\right)\right) u\left(t_{f}\right)+\alpha t_{f} \\
& =-\frac{1}{2} b u^{2}\left(t_{f}\right)+\alpha t_{f}=0 \rightarrow t_{f}=\frac{1}{2 b \alpha}\left(-c_{2}+c_{1} t_{f}\right)^{2}
\end{aligned}
$$

- Now go back to the state equations:

$$
\dot{x}_{2}(t)=-\frac{c_{2}}{b}+\frac{c_{1}}{b} t \quad \rightarrow \quad x_{2}(t)=c_{3}-\frac{c_{2}}{b} t+\frac{c_{1}}{2 b} t^{2}
$$

and since $x_{2}(0)=0, c_{3}=0$, and

$$
\dot{x}_{1}(t)=x_{2}(t) \quad \rightarrow \quad x_{1}(t)=c_{4}-\frac{c_{2}}{2 b} t^{2}+\frac{c_{1}}{6 b} t^{3}
$$

and since $x_{1}(0)=10, c_{4}=10$

- Now note that

$$
\begin{aligned}
x_{2}\left(t_{f}\right) & =-\frac{c_{2}}{b} t_{f}+\frac{c_{1}}{2 b} t_{f}^{2}=0 \\
x_{1}\left(t_{f}\right) & =10-\frac{c_{2}}{2 b} t_{f}^{2}+\frac{c_{1}}{6 b} t_{f}^{3}=0 \\
& =10-\frac{c_{2}}{6 b} t_{f}^{2}=0 \quad \rightarrow \quad c_{2}=\frac{60 b}{t_{f}^{2}}, \quad c_{1}=\frac{120 b}{t_{f}^{3}}
\end{aligned}
$$

- But that gives us:

$$
t_{f}=\frac{1}{2 b \alpha}\left(-\frac{60 b}{t_{f}^{2}}+\frac{120 b}{t_{f}^{3}} t_{f}\right)^{2}=\frac{(60 b)^{2}}{2 b \alpha t_{f}^{4}}
$$

so that $t_{f}^{5}=1800 b / \alpha$ or $t_{f} \approx 4.48(b / \alpha)^{1 / 5}$, which makes sense because t_{f} goes down as α goes up.

- Finally, $c_{2}=2.99 b^{3 / 5} \alpha^{2 / 5}$ and $c_{1}=1.33 b^{2 / 5} \alpha^{3 / 5}$

Figure 6.1: Example 6-1

Example 6-1

```
%
% Simple opt example showing impact of weight on t_f
% 16.323 Spring 2008
% Jonathan How
% opt1.m
%
clear all;close all;
set(0, 'DefaultAxesFontSize', 14, 'DefaultAxesFontWeight','demi')
set(0, 'DefaultTextFontSize', 14, 'DefaultTextFontWeight','demi')
%
A=[0 1;0 0];B=[0 1]';C=eye(2);D=zeros(2,1);
G=ss(A,B,C,D);
X0=[10 0]';
b=0.1;
alp=1;
tf=(1800*b/alp)^0.2;
c1=120*b/tf^3;
c2=60*b/tf^2;
time=[0:1e-2:tf];
u=(-c2+c1*time)/b;
[y1,t1]=lsim(G,u,time,X0);
figure(1);clg
plot(time,u,'k-','LineWidth',2);hold on
alp=10;
tf=(1800*b/alp)^0.2;
c1=120*b/tf^3;
c2=60*b/tf^2;
time=[0:1e-2:tf];
u=(-c2+c1*time)/b;
[y2,t2]=lsim(G,u,time,X0);
plot(time,u,'b--','LineWidth',2);
alp=0.10;
tf=(1800*b/alp)^0.2;
c1=120*b/tf^3;
c2=60*b/tf^2;
time=[0:1e-2:tf];
u=(-c2+c1*time)/b;
[y3,t3]=lsim(G,u,time,X0);
plot(time,u,'g-.','LineWidth',2);hold off
legend('\alpha=1','\alpha=10','\alpha=0.1')
xlabel('Time (sec)')
ylabel('u(t)')
title(['b= ',num2str(b)])
figure(2);clg
plot(t1,y1(:,1),'k-','LineWidth',2);
hold on
plot(t2,y2(:,1),'b--','LineWidth',2);
plot(t3,y3(:,1),'g-.','LineWidth',2);
hold off
legend('\alpha=1','\alpha=10','\alpha=0.1')
xlabel('Time (sec)')
ylabel('y(t)')
title(['b= ',num2str(b)])
print -dpng -r300 -f1 opt11.png
print -dpng -r300 -f2 opt12.png
```

- Deterministic Linear Quadratic Regulator

Plant:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=A(t) \mathbf{x}(t)+B_{u}(t) \mathbf{u}(t), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} \\
& \mathbf{z}(t)=C_{z}(t) \mathbf{x}(t)
\end{aligned}
$$

Cost:

$2 J_{L Q R}=\int_{t_{0}}^{t_{f}}\left[\mathbf{z}^{T}(t) R_{\mathrm{zZ}}(t) \mathbf{z}(t)+\mathbf{u}^{T}(t) R_{\mathrm{uu}}(t) \mathbf{u}(t)\right] d t+\mathbf{x}\left(t_{f}\right)^{T} P_{t_{f}} \mathbf{x}\left(t_{f}\right)$

- Where $P_{t_{f}} \geq 0, R_{\mathrm{zz}}(t)>0$ and $R_{\mathrm{uu}}(t)>0$
- Define $R_{\mathrm{xx}}=C_{z}^{T} R_{\mathrm{zz}} C_{z} \geq 0$
$-A(t)$ is a continuous function of time.
- $B_{u}(t), C_{z}(t), R_{\mathrm{zz}}(t), R_{\mathrm{uu}}(t)$ are piecewise continuous functions of time, and all are bounded.
- Problem Statement: Find input $u(t) \forall t \in\left[t_{0}, t_{f}\right]$ to $\min J_{L Q R}$ - This is not necessarily specified to be a feedback controller.
- To optimize the cost, we follow the procedure of augmenting the constraints in the problem (the system dynamics) to the cost (integrand) to form the Hamiltonian:

$$
H=\frac{1}{2}\left(\mathbf{x}^{T}(t) R_{\mathrm{xx}} \mathbf{x}(t)+\mathbf{u}^{T}(t) R_{\mathrm{uu}} \mathbf{u}(t)\right)+\mathbf{p}^{T}(t)\left(A \mathbf{x}(t)+B_{u} \mathbf{u}(t)\right)
$$

$-\mathbf{p}(t) \in \mathbb{R}^{n \times 1}$ is called the Adjoint variable or Costate

- It is the Lagrange multiplier in the problem.
- The necessary conditions (see 6-3) for optimality are that:

1. $\dot{\mathbf{x}}(t)=\frac{\partial H^{T}}{\partial \mathbf{p}}=A \mathbf{x}(t)+B(t) \mathbf{u}(t)$ with $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$
2. $\dot{\mathbf{p}}(t)=-\frac{\partial H^{T}}{\partial \mathbf{x}}=-R_{\mathrm{xx}} \mathbf{x}(t)-A^{T} \mathbf{p}(t)$ with $\mathbf{p}\left(t_{f}\right)=P_{t_{f}} \mathbf{x}\left(t_{f}\right)$
3. $\frac{\partial H}{\partial \mathbf{u}}=0 \Rightarrow R_{\mathrm{uu}} \mathbf{u}+B_{u}^{T} \mathbf{p}(t)=0$, so $\mathbf{u}^{\star}=-R_{\mathrm{uu}}^{-1} B_{u}^{T} \mathbf{p}(t)$
4. As before, we can check for a minimum by looking at $\frac{\partial^{2} H}{\partial \mathbf{u}^{2}} \geq 0$ (need to check that $R_{\mathrm{uu}} \geq 0$)

- Note that $\mathbf{p}(t)$ plays the same role as $J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)^{T}$ in previous solutions to the continuous LQR problem (see 4-8).
- Main difference is there is no need to guess a solution for $J^{\star}(\mathbf{x}(t), t)$
- Now have:

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+B \mathbf{u}^{\star}(t)=A \mathbf{x}(t)-B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \mathbf{p}(t)
$$

which can be combined with equation for the adjoint variable

$$
\begin{array}{r}
\dot{\mathbf{p}}(t)=-R_{\mathrm{xx}} \mathbf{x}(t)-A^{T} \mathbf{p}(t)=-C_{z}^{T} R_{\mathrm{zz}} C_{z} \mathbf{x}(t)-A^{T} \mathbf{p}(t) \\
\Rightarrow \quad\left[\begin{array}{c}
\dot{\mathbf{x}}(t) \\
\dot{\mathbf{p}}(t)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-C_{z}^{T} R_{\mathrm{zz}} C_{z} & -A^{T}
\end{array}\right]}_{H}\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{p}(t)
\end{array}\right]
\end{array}
$$

where H is called the Hamiltonian Matrix.

- Matrix describes coupled closed loop dynamics for both \mathbf{x} and \mathbf{p}.
- Dynamics of $\mathbf{x}(t)$ and $\mathbf{p}(t)$ are coupled, but $\mathbf{x}(t)$ known initially and $\mathbf{p}(t)$ known at terminal time, since $\mathbf{p}\left(t_{f}\right)=P_{t_{f}} \mathbf{x}\left(t_{f}\right)$
- Two point boundary value problem \Rightarrow typically hard to solve.
- However, in this case, we can introduce a new matrix variable $P(t)$ and show that:

1. $\mathbf{p}(t)=P(t) \mathbf{x}(t)$
2. It is relatively easy to find $P(t)$.

- How proceed?

1. For the $2 n$ system

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}(t) \\
\dot{\mathbf{p}}(t)
\end{array}\right]=\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-C_{z}^{T} R_{\mathrm{zz}} C_{z} & -A^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{p}(t)
\end{array}\right]
$$

define a transition matrix

$$
F\left(t_{1}, t_{0}\right)=\left[\begin{array}{ll}
F_{11}\left(t_{1}, t_{0}\right) & F_{12}\left(t_{1}, t_{0}\right) \\
F_{21}\left(t_{1}, t_{0}\right) & F_{22}\left(t_{1}, t_{0}\right)
\end{array}\right]
$$

and use this to relate $\mathbf{x}(t)$ to $\mathbf{x}\left(t_{f}\right)$ and $\mathbf{p}\left(t_{f}\right)$

$$
\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{p}(t)
\end{array}\right]=\left[\begin{array}{ll}
F_{11}\left(t, t_{f}\right) & F_{12}\left(t, t_{f}\right) \\
F_{21}\left(t, t_{f}\right) & F_{22}\left(t, t_{f}\right)
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}\left(t_{f}\right) \\
\mathbf{p}\left(t_{f}\right)
\end{array}\right]
$$

so

$$
\begin{aligned}
\mathbf{x}(t) & =F_{11}\left(t, t_{f}\right) \mathbf{x}\left(t_{f}\right)+F_{12}\left(t, t_{f}\right) \mathbf{p}\left(t_{f}\right) \\
& =\left[F_{11}\left(t, t_{f}\right)+F_{12}\left(t, t_{f}\right) P_{t_{f}}\right] \mathbf{x}\left(t_{f}\right)
\end{aligned}
$$

2. Now find $\mathbf{p}(t)$ in terms of $\mathbf{x}\left(t_{f}\right)$

$$
\mathbf{p}(t)=\left[F_{21}\left(t, t_{f}\right)+F_{22}\left(t, t_{f}\right) P_{t_{f}}\right] \mathbf{x}\left(t_{f}\right)
$$

3. Eliminate $\mathbf{x}\left(t_{f}\right)$ to get:

$$
\begin{aligned}
\mathbf{p}(t) & =\left[F_{21}\left(t, t_{f}\right)+F_{22}\left(t, t_{f}\right) P_{t_{f}}\right]\left[F_{11}\left(t, t_{f}\right)+F_{12}\left(t, t_{f}\right) P_{t_{f}}\right]^{-1} \mathbf{x}(t) \\
& \triangleq P(t) \mathbf{x}(t)
\end{aligned}
$$

- Now have $\mathbf{p}(t)=P(t) \mathbf{x}(t)$, must find the equation for $P(t)$

$$
\begin{aligned}
& \dot{\mathbf{p}}(t)=\dot{P}(t) \mathbf{x}(t)+P(t) \dot{\mathbf{x}}(t) \\
& \Rightarrow \quad-C_{z}^{T} R_{\mathrm{zZ}} C_{z} \mathbf{x}(t)-A^{T} \mathbf{p}(t)= \\
&-\dot{P}(t) \mathbf{x}(t)=C_{z}^{T} R_{\mathrm{zz}} C_{z} \mathbf{x}(t)+A^{T} \mathbf{p}(t)+P(t) \dot{\mathbf{x}}(t) \\
&=C_{z}^{T} R_{\mathrm{zz}} C_{z} \mathbf{x}(t)+A^{T} \mathbf{p}(t)+P(t)\left(A \mathbf{x}(t)-B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \mathbf{p}(t)\right) \\
&=\left(C_{z}^{T} R_{\mathrm{zz}} C_{z}+P(t) A\right) \mathbf{x}(t)+\left(A^{T}-P(t) B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T}\right) \mathbf{p}(t) \\
&=\left(C_{z}^{T} R_{\mathrm{zz}} C_{z}+P(t) A\right) \mathbf{x}(t)+\left(A^{T}-P(t) B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T}\right) P(t) \mathbf{x}(t) \\
&=\left[A^{T} P(t)+P(t) A+C_{z}^{T} R_{\mathrm{zz}} C_{z}-P(t) B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} P(t)\right] \mathbf{x}(t)
\end{aligned}
$$

- This must be true for arbitrary $\mathbf{x}(t)$, so $P(t)$ must satisfy

$$
-\dot{P}(t)=A^{T} P(t)+P(t) A+C_{z}^{T} R_{\mathrm{zz}} C_{z}-P(t) B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} P(t)
$$

- Which, of course, is the matrix differential Riccati Equation.
- Optimal value of $P(t)$ is found by solving this equation backwards in time from t_{f} with $P\left(t_{f}\right)=P_{t_{f}}$
- The control gains are then

$$
u_{\mathrm{opt}}=-R_{\mathrm{uu}}^{-1} B_{u}^{T} \mathbf{p}(t)=-R_{\mathrm{uu}}^{-1} B_{u}^{T} P(t) \mathbf{x}(t)=-K(t) \mathbf{x}(t)
$$

- Optimal control inputs can in fact be computed using linear feedback on the full system state
- Find optimal steady state feedback gains $\mathbf{u}(t)=-K \mathbf{x}(t)$ using

$$
K=\operatorname{lqr}\left(A, B, C_{z}^{T} R_{z z} C_{z}, R_{\mathrm{uu}}\right)
$$

- Key point: This controller works equally well for MISO and MIMO regulator designs.

Alternate Derivation of DRE

- On 6-10 we showed that:

$$
P(t)=\left[F_{21}\left(t, t_{f}\right)+F_{22}\left(t, t_{f}\right) P_{t_{f}}\right]\left[F_{11}\left(t, t_{f}\right)+F_{12}\left(t, t_{f}\right) P_{t_{f}}\right]^{-1}
$$

- To find the Riccati equation, note that

$$
\frac{d}{d t} M^{-1}(t)=-M^{-1}(t) \dot{M}(t) M^{-1}(t)
$$

which gives

$$
\begin{aligned}
\dot{P}(t)= & {\left[\dot{F}_{21}\left(t, t_{f}\right)+\dot{F}_{22}\left(t, t_{f}\right) P_{t_{f}}\right]\left[F_{11}\left(t, t_{f}\right)+F_{12}\left(t, t_{f}\right) P_{t_{f}}\right]^{-1} } \\
& -\left[F_{21}\left(t, t_{f}\right)+F_{22}\left(t, t_{f}\right) P_{t_{f}}\right]\left[F_{11}\left(t, t_{f}\right)+F_{12}\left(t, t_{f}\right) P_{t_{f}}\right]^{-1} . \\
& {\left[\dot{F}_{11}\left(t, t_{f}\right)+\dot{F}_{12}\left(t, t_{f}\right) P_{t_{f}}\right]\left[F_{11}\left(t, t_{f}\right)+F_{12}\left(t, t_{f}\right) P_{t_{f}}\right]^{-1} }
\end{aligned}
$$

- Since F is the transition matrix ${ }^{12}$ for the system (see $6-10$), then

$$
\begin{aligned}
\frac{d}{d t} F\left(t, t_{f}\right) & =H F\left(t, t_{f}\right) \\
{\left[\begin{array}{ll}
\dot{F}_{11} & \dot{F}_{12} \\
\dot{F}_{21} & \dot{F}_{22}
\end{array}\right]\left(t, t_{f}\right) } & =\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-R_{\mathrm{xx}} & -A^{T}
\end{array}\right]\left(t, t_{f}\right)\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22}
\end{array}\right]\left(t, t_{f}\right)
\end{aligned}
$$

[^2]- Now substitute and re-arrange:

$$
\begin{aligned}
& \dot{P}=\left\{\left[\dot{F}_{21}+\dot{F}_{22} P_{t_{f}}\right]-P\left[\dot{F}_{11}+\dot{F}_{12} P_{t_{f}}\right]\right\}\left[F_{11}+F_{12} P_{t_{f}}\right]^{-1} \\
& \dot{F}_{11}=A F_{11}-B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} F_{21} \\
& \dot{F}_{12}=A F_{12}-B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} F_{22} \\
& \dot{F}_{21}=-R_{\mathrm{xx}} F_{11}-A^{T} F_{21} \\
& \dot{F}_{22}=-R_{\mathrm{xx}} F_{12}-A^{T} F_{22} \\
& \dot{P}=\left\{\left(-R_{\mathrm{xx}} F_{11}-A^{T} F_{21}+\left(-R_{\mathrm{xx}} F_{12}-A^{T} F_{22}\right) P_{t_{f}}\right)\right. \\
&\left.-P\left(A F_{11}-B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} F_{21}+\left(A F_{12}-B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} F_{22}\right) P_{t_{f}}\right)\right\}\left[F_{11}+F_{12} P_{t_{f}}\right]^{-1}
\end{aligned}
$$

- There are four terms:

$$
\begin{gathered}
-R_{\mathrm{xx}}\left(F_{11}+F_{12} P_{t_{f}}\right)\left[F_{11}+F_{12} P_{t_{f}}\right]^{-1}=-R_{\mathrm{xx}} \\
-A^{T}\left(F_{21}+F_{22} P_{t_{f}}\right)\left[F_{11}+F_{12} P_{t_{f}}\right]^{-1}=-A^{T} P \\
-P A\left(F_{11}+F_{12} P_{t_{f}}\right)\left[F_{11}+F_{12} P_{t_{f}}\right]^{-1}=-P A \\
P B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T}\left(F_{21}+F_{22} P_{t_{f}}\right)\left[F_{11}+F_{12} P_{t_{f}}\right]^{-1}=P B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} P
\end{gathered}
$$

- Which, as expected, gives that

$$
-\dot{P}=A^{T} P+P A+R_{\mathrm{xx}}-P B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} P
$$

CARE Solution Algorithm

- Recall from (6-10) that

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}(t) \\
\dot{\mathbf{p}}(t)
\end{array}\right]=\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-C_{z}^{T} R_{\mathrm{zz}} C_{z} & -A^{T}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x}(t) \\
\mathbf{p}(t)
\end{array}\right]
$$

- Assuming that the eigenvalues of H are unique, the Hamiltonian can be diagonalized into the form:

$$
\left[\begin{array}{l}
\dot{\mathbf{z}}_{1}(t) \\
\dot{\mathbf{z}}_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
-\Lambda & 0 \\
0 & \Lambda
\end{array}\right]\left[\begin{array}{l}
\mathbf{z}_{1}(t) \\
\mathbf{z}_{2}(t)
\end{array}\right]
$$

where diagonal matrix Λ is comprised of RHP eigenvalues of H.

- A similarity transformation exists between the states $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{x}, \mathbf{p} :

$$
\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{p}(t)
\end{array}\right]=\Psi\left[\begin{array}{l}
\mathbf{z}_{1}(t) \\
\mathbf{z}_{2}(t)
\end{array}\right] \Leftrightarrow\left[\begin{array}{l}
\mathbf{z}_{1}(t) \\
\mathbf{z}_{2}(t)
\end{array}\right]=\Psi^{-1}\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{p}(t)
\end{array}\right]
$$

where

$$
\Psi=\left[\begin{array}{l|l}
\Psi_{11} & \Psi_{12} \\
\hline \Psi_{21} & \Psi_{22}
\end{array}\right] \text { and } \Psi^{-1}=\left[\begin{array}{l|l}
\left(\Psi^{-1}\right)_{11} & \left(\Psi^{-1}\right)_{12} \\
\hline\left(\Psi^{-1}\right)_{21} & \left(\Psi^{-1}\right)_{22}
\end{array}\right]
$$

and the columns of Ψ are the eigenvectors of H.

- Solving for $\mathbf{z}_{2}(t)$ gives

$$
\begin{aligned}
\mathbf{z}_{2}(t)=e^{\Lambda t} \mathbf{z}_{2}(0) & =\left[\left(\Psi^{-1}\right)_{21} \mathbf{x}(t)+\left(\Psi^{-1}\right)_{22} \mathbf{p}(t)\right] \\
& =\left[\left(\Psi^{-1}\right)_{21}+\left(\Psi^{-1}\right)_{22} P(t)\right] \mathbf{x}(t)
\end{aligned}
$$

- For the cost to be finite, need $\lim _{t \rightarrow \infty} \mathbf{x}(t)=0$, so can show that

$$
\lim _{t \rightarrow \infty} \mathbf{z}_{2}(t)=0
$$

- But given that the Λ dynamics in the RHP, this can only be true if $\mathbf{z}_{2}(0)=0$, which means that $\mathbf{z}_{2}(t)=0 \forall t$
- With this fact, note that

$$
\begin{aligned}
\mathbf{x}(t) & =\Psi_{11} \mathbf{z}_{1}(t) \\
\mathbf{p}(t) & =\Psi_{21} \mathbf{z}_{1}(t)
\end{aligned}
$$

which can be combined to give:

$$
\mathbf{p}(t)=\Psi_{21}\left(\Psi_{11}\right)^{-1} \mathbf{x}(t) \equiv P_{s s} \mathbf{x}(t)
$$

- Summary of solution algorithm:
- Find the eigenvalues and eigenvectors of H
- Select the n eigenvectors associated with the n eigenvalues in the LHP.
- Form Ψ_{11} and Ψ_{21}.
- Compute the steady state solution of the Riccati equation using

$$
P_{s s}=\Psi_{21}\left(\Psi_{11}\right)^{-1}
$$

\% alternative calc of Riccati solution
$H=\left[A-B * i n v(R u u) * B^{\prime} ;-R x x-A '\right] ;$
[V,D]=eig(H); \% check order of eigenvalues
Psi11=V(1:2,1:2);
Psi21=V(3:4,1:2);
Ptest=Psi21*inv(Psi11);

Optimal Cost

- Showed in earlier derivations that the optimal cost-to-go from the initial (or any state) is of the form

$$
J=\frac{1}{2} \mathbf{x}^{T}\left(t_{0}\right) P\left(t_{0}\right) \mathbf{x}\left(t_{0}\right)
$$

- Relatively clean way to show it for this derivation as well.
- Start with the standard cost and add zero $\left(A \mathbf{x}+B_{u} \mathbf{u}-\dot{\mathbf{x}}=0\right)$

$$
\begin{aligned}
J_{L Q R}= & \frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\mathbf{x}^{T} R_{\mathrm{xx}} \mathbf{x}+\mathbf{u}^{T} R_{\mathrm{uu}} \mathbf{u}+\mathbf{p}^{T}\left(A \mathbf{x}+B_{u} \mathbf{u}-\dot{\mathbf{x}}\right)\right] d t \\
& +\frac{1}{2} \mathbf{x}\left(t_{f}\right)^{T} P_{t_{f}} \mathbf{x}\left(t_{f}\right)
\end{aligned}
$$

- Now use the results of the necessary conditions to get:

$$
\begin{array}{rlrl}
\dot{\mathbf{p}}=-H_{\mathbf{x}}^{T} & & \Rightarrow \mathbf{p}^{T} A=-\dot{\mathbf{p}}^{T}-\mathbf{x}^{T} R_{\mathrm{xx}} \\
H_{\mathbf{u}}=0 & \Rightarrow \mathbf{p}^{T} B_{u}=-\mathbf{u}^{T} R_{\mathrm{uu}}
\end{array}
$$

with $\mathbf{p}\left(t_{f}\right)=P_{t_{f}} \mathbf{x}\left(t_{f}\right)$

- Substitute these terms to get

$$
\begin{aligned}
J_{L Q R} & =\frac{1}{2} \mathbf{x}\left(t_{f}\right)^{T} P_{t_{f}} \mathbf{x}\left(t_{f}\right)-\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\dot{\mathbf{p}}^{T} \mathbf{x}+\mathbf{p}^{T} \dot{\mathbf{x}}\right] d t \\
& =\frac{1}{2} \mathbf{x}\left(t_{f}\right)^{T} P_{t_{f}} \mathbf{x}\left(t_{f}\right)-\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\frac{d}{d t}\left(\mathbf{p}^{T} \mathbf{x}\right)\right] d t \\
& =\frac{1}{2} \mathbf{x}\left(t_{f}\right)^{T} P_{t_{f}} \mathbf{x}\left(t_{f}\right)-\frac{1}{2}\left[\mathbf{p}^{T}\left(t_{f}\right) \mathbf{x}\left(t_{f}\right)-\mathbf{p}^{T}\left(t_{0}\right) \mathbf{x}\left(t_{0}\right)\right] \\
& =\frac{1}{2} \mathbf{x}\left(t_{f}\right)^{T} P_{t_{f}} \mathbf{x}\left(t_{f}\right)-\frac{1}{2}\left[\mathbf{x}^{T}\left(t_{f}\right) P_{t_{f}} \mathbf{x}\left(t_{f}\right)-\mathbf{x}^{T}\left(t_{0}\right) P\left(t_{0}\right) \mathbf{x}\left(t_{0}\right)\right] \\
& =\frac{1}{2} \mathbf{x}^{T}\left(t_{0}\right) P\left(t_{0}\right) \mathbf{x}\left(t_{0}\right)
\end{aligned}
$$

Pole Locations

- The closed-loop dynamics couple $\mathbf{x}(t)$ and $\mathbf{p}(t)$ and are given by

$$
\left[\begin{array}{c}
\dot{\mathbf{x}}(t) \\
\dot{\mathbf{p}}(t)
\end{array}\right]=\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-C_{z}^{T} R_{\mathrm{zz}} C_{z} & -A^{T}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}(t) \\
\mathbf{p}(t)
\end{array}\right]
$$

with the appropriate boundary conditions.

- OK, so where are the closed-loop poles of the system?
- Answer: must be eigenvalues of Hamiltonian matrix for the system:

$$
H \triangleq\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-C_{z}^{T} R_{\mathrm{zz}} C_{z} & -A^{T}
\end{array}\right]
$$

so we must solve $\operatorname{det}(s I-H)=0$.

- Key point: For a SISO system, we can relate the closed-loop poles to a Symmetric Root Locus (SRL) for the transfer function

$$
G_{z u}(s)=C_{z}(s I-A)^{-1} B_{u}=\frac{N(s)}{D(s)}
$$

- Poles and zeros of $G_{z u}(s)$ play an integral role in determining SRL - Note $G_{z u}(s)$ is the transfer function from control inputs to performance variable.
- In fact, the closed-loop poles are given by the LHP roots of

$$
\Delta(s)=D(s) D(-s)+\frac{R_{\mathrm{zz}}}{R_{\mathrm{uu}}} N(s) N(-s)=0
$$

$-D(s) D(-s)+\frac{R_{z z}}{R_{\text {uu }}} N(s) N(-s)$ is drawn using standard root locus rules - but it is symmetric wrt to both the real and imaginary axes.

- For a stable system, we clearly just take the poles in the LHP.

Derivation of the SRL

- The closed-loop poles are given by the eigenvalues of

$$
H \triangleq\left[\begin{array}{cc}
A & -B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} \\
-C_{z}^{T} R_{\mathrm{zz}} C_{z} & -A^{T}
\end{array}\right] \rightarrow \quad \operatorname{det}(s I-H)=0
$$

- Note: if A is invertible:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right) \\
& \Rightarrow \operatorname{det}(s I-H)=\operatorname{det}(s I-A) \operatorname{det}\left[\left(s I+A^{T}\right)-C_{z}^{T} R_{z z} C_{z}(s I-A)^{-1} B_{u} R_{u u}^{-1} B_{u}^{T}\right] \\
&=\operatorname{det}(s I-A) \operatorname{det}\left(s I+A^{T}\right) \operatorname{det}\left[I-C_{z}^{T} R_{z z} C_{z}(s I-A)^{-1} B_{u} R_{u u}^{-1} B_{u}^{T}\left(s I+A^{T}\right)^{-1}\right]
\end{aligned}
$$

- Also: $\operatorname{det}(I+A B C)=\operatorname{det}(I+C A B)$, and if $D(s)=\operatorname{det}(s I-A)$, then $D(-s)=\operatorname{det}\left(-s I-A^{T}\right)=(-1)^{n} \operatorname{det}\left(s I+A^{T}\right)$
$\operatorname{det}(s I-H)=(-1)^{n} D(s) D(-s) \operatorname{det}\left[I+R_{\text {uu }}^{-1} B_{u}^{T}\left(-s I-A^{T}\right)^{-1} C_{z}^{T} R_{z z} C_{z}(s I-A)^{-1} B_{u}\right]$
- If $G_{z u}(s)=C_{z}(s I-A)^{-1} B_{u}$, then $G_{z u}^{T}(-s)=B_{u}^{T}\left(-s I-A^{T}\right)^{-1} C_{z}^{T}$, so for SISO systems

$$
\begin{aligned}
\operatorname{det}(s I-H) & =(-1)^{n} D(s) D(-s) \operatorname{det}\left[I+R_{\mathrm{uu}}^{-1} G_{z u}^{T}(-s) R_{\mathrm{zz}} G_{z u}(s)\right] \\
& =(-1)^{n} D(s) D(-s)\left[I+\frac{R_{\mathrm{zz}}}{R_{\mathrm{uu}}} G_{z u}(-s) G_{z u}(s)\right] \\
& =(-1)^{n}\left[D(s) D(-s)+\frac{R_{\mathrm{zz}}}{R_{\mathrm{uu}}} N(s) N(-s)\right]=0
\end{aligned}
$$

Example 6-2

- Simple example from 4-12: A scalar system with $\dot{x}=a x+b u$ with $\operatorname{cost}\left(R_{\mathrm{xx}}>0\right.$ and $\left.R_{\mathrm{uu}}>0\right) J=\int_{0}^{\infty}\left(R_{\mathrm{zz}} x^{2}(t)+R_{\mathrm{uu}} u^{2}(t)\right) d t$
- The steady-state P solves $2 a P+R_{\mathrm{zz}}-P^{2} b^{2} / R_{\mathrm{uu}}=0$ which gives that $P=\frac{a+\sqrt{a^{2}+b^{2} R_{\mathrm{zz}} / R_{\mathrm{uu}}}}{R_{\mathrm{uu}}^{-1} b^{2}}>0$
- So that $u(t)=-K x(t)$ where $K=R_{\mathrm{uu}}^{-1} b P=\frac{a+\sqrt{a^{2}+b^{2} R_{\mathrm{zz}} / R_{\mathrm{uu}}}}{b}$ - and the closed-loop dynamics are

$$
\begin{aligned}
\dot{x} & =(a-b K) x=\left(a-\frac{b}{b}\left(a+\sqrt{a^{2}+b^{2} R_{\mathrm{zz}} / R_{\mathrm{uu}}}\right)\right) x \\
& =-\sqrt{a^{2}+b^{2} R_{\mathrm{zz}} / R_{\mathrm{uu}}} x=A_{c l} x(t)
\end{aligned}
$$

- In this case, $G_{z u}(s)=b /(s-a)$ so that $N(s)=b$ and $D(s)=(s-a)$, and the SRL is of the form:

$$
(s-a)(-s-a)+\frac{R_{\mathrm{zZ}}}{R_{\mathrm{uu}}} b^{2}=0
$$

- SRL is the same whether $a<0$ (OL stable) or $a>0$ (OL unstable)
- But the CLP is always the one in the LHP
- Explains result on 4-12 about why gain $K \neq 0$ for OL unstable systems, even for expensive control problem $\left(R_{\mathrm{uu}} \rightarrow \infty\right)$

SRL Interpretations

- For SISO case, define $R_{\mathrm{zz}} / R_{\mathrm{uu}}=1 / r$.
- Consider what happens as $r \leadsto \infty$ - high control cost case

$$
\Delta(s)=D(s) D(-s)+r^{-1} N(s) N(-s)=0 \Rightarrow \mathbf{D}(\mathbf{s}) \mathbf{D}(-s)=\mathbf{0}
$$

- So the n closed-loop poles are:
\diamond Stable roots of the open-loop system (already in the LHP.)
\diamond Reflection about the $\mathbf{j} \omega$-axis of the unstable open-loop poles.
- Consider what happens as $r \leadsto 0$ - low control cost case

$$
\Delta(s)=D(s) D(-s)+r^{-1} N(s) N(-s)=0 \Rightarrow \mathbf{N}(\mathbf{s}) \mathbf{N}(-\mathbf{s})=\mathbf{0}
$$

- Assume order of $N(s) N(-s)$ is $2 m<2 n$
- So the n closed-loop poles go to:
\diamond The m finite zeros of the system that are in the LHP (or the reflections of the system zeros in the RHP).
\diamond The system zeros at infinity (there are $n-m$ of these).
- The poles tending to infinity do so along very specific paths so that they form a Butterworth Pattern:
- At high frequency we can ignore all but the highest powers of s in the expression for $\Delta(s)=0$

$$
\begin{aligned}
& \Delta(s)=0 \quad(-1)^{n} s^{2 n}+r^{-1}(-1)^{m}\left(b_{o} s^{m}\right)^{2}=0 \\
& \Rightarrow s^{2(n-m)}=(-1)^{n-m+1} \frac{b_{o}^{2}}{r}
\end{aligned}
$$

- The $2(n-m)$ solutions of this expression lie on a circle of radius

$$
\left(b_{0}^{2} / r\right)^{1 / 2(n-m)}
$$

at the intersection of the radial lines with phase from the negative real axis:

$$
\begin{gathered}
\pm \frac{l \pi}{n-m}, \quad l=0,1, \ldots, \frac{n-m-1}{2}, \quad(\mathbf{n}-\mathbf{m}) \text { odd } \\
\pm \frac{(l+1 / 2) \pi}{n-m}, l=0,1, \ldots, \frac{n-m}{2}-1, \quad(\mathbf{n - m}) \text { even } \\
\\
\begin{array}{c}
\frac{n-m}{1} \\
2 \\
3 \\
4 \\
4
\end{array} \pm \pi / 8, \pm 3 \pi / 8
\end{gathered}
$$

- Note: Plot the SRL using the 180° rules (normal) if $n-m$ is even and the 0° rules if $n-m$ is odd.

Figure 6.2: $G(s)=\frac{(s-2)(s-4)}{(s-1)(s-3)\left(s^{2}+0.8 s+4\right) s^{2}}$

- As noted previously, we are free to pick the state weighting matrices C_{z} to penalize the parts of the motion we are most concerned with.
- Simple example - consider oscillator with $\mathbf{x}=[p, v]^{T}$

$$
A=\left[\begin{array}{rr}
0 & 1 \\
-2 & -0.5
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

but we choose two cases for z

Figure 6.3: SRL with position (left) and velocity penalties (right)

- Clearly, choosing a different C_{z} impacts the SRL because it completely changes the zero-structure for the system.

LQR Stability Margins

- LQR/SRL approach selects closed-loop poles that balance between system errors and the control effort.
- Easy design iteration using r - poles move along the SRL.
- Sometimes difficult to relate the desired transient response to the LQR cost function.
- Particularly nice thing about the LQR approach is that the designer is focused on system performance issues
- Turns out that the news is even better than that, because LQR exhibits very good stability margins
- Consider the LQR stability robustness.

$$
\begin{aligned}
J & =\int_{0}^{\infty} \mathbf{z}^{T} \mathbf{z}+\rho \mathbf{u}^{T} \mathbf{u} d t \\
\dot{\mathbf{x}} & =A \mathbf{x}+B \mathbf{u} \\
\mathbf{z} & =C_{z} \mathbf{x}, \quad R_{\mathrm{xx}}=C_{z}^{T} C_{z}
\end{aligned}
$$

- Study robustness in the frequency domain.
- Loop transfer function $L(s)=K(s I-A)^{-1} B$
- Cost transfer function $C(s)=C_{z}(s I-A)^{-1} B$
- Can develop a relationship between the open-loop cost $C(s)$ and the closed-loop return difference $I+L(s)$ called the Kalman Frequency Domain Equality

$$
[I+L(-s)]^{T}[I+L(s)]=1+\frac{1}{\rho} C^{T}(-s) C(s)
$$

- Sketch of Proof
- Start with $\mathbf{u}=-K \mathbf{x}, K=\frac{1}{\rho} B^{T} P$, where

$$
0=-A^{T} P-P A-R_{x x}+\frac{1}{\rho} P B B^{T} P
$$

- Introduce Laplace variable s using $\pm s P$

$$
0=\left(-s I-A^{T}\right) P+P(s I-A)-R_{x x}+\frac{1}{\rho} P B B^{T} P
$$

- Pre-multiply by $B^{T}\left(-s I-A^{T}\right)^{-1}$, post-multiply by $(s I-A)^{-1} B$
- Complete the square ...

$$
[I+L(-s)]^{T}[I+L(s)]=1+\frac{1}{\rho} C^{T}(-s) C(s)
$$

- Can handle the MIMO case, but look at the SISO case to develop further insights ($s=\mathrm{j} \omega$)

$$
\begin{aligned}
{[I+L(-s)]^{T}[I+L(s)] } & =\left(I+L_{r}(\omega)-\mathrm{j} L_{i}(\omega)\right)\left(I+L_{r}(\omega)+\mathrm{j} L_{i}(\omega)\right) \\
& \equiv|1+L(\mathrm{j} \omega)|^{2}
\end{aligned}
$$

and

$$
C^{T}(-\mathrm{j} \omega) C(\mathrm{j} \omega)=C_{r}^{2}+C_{i}^{2}=|C(\mathrm{j} \omega)|^{2} \geq 0
$$

- Thus the KFE becomes

$$
|1+L(\mathrm{j} \omega)|^{2}=1+\frac{1}{\rho}|C(\mathrm{j} \omega)|^{2} \geq 1
$$

- Implications: The Nyquist plot of $L(\mathrm{j} \omega)$ will always be outside the unit circle centered at $(-1,0)$.

- Great, but why is this so significant? Recall the SISO form of the Nyquist Stability Theorem:
If the loop transfer function $L(s)$ has P poles in the RHP s-plane (and $\lim _{s \rightarrow \infty} L(s)$ is a constant), then for closed-loop stability, the locus of $L(\mathrm{j} \omega)$ for $\omega:(-\infty, \infty)$ must encircle the critical point $(-1,0) \mathrm{P}$ times in the counterclockwise direction (Ogata528)
- So we can directly prove stability from the Nyquist plot of $L(s)$.

But what if the model is wrong and it turns out that the actual loop transfer function $L_{A}(s)$ is given by:

$$
L_{A}(s)=L_{N}(s)[1+\Delta(s)], \quad|\Delta(\mathrm{j} \omega)| \leq 1, \quad \forall \omega
$$

- We need to determine whether these perturbations to the loop TF will change the decision about closed-loop stability
\Rightarrow can do this directly by determining if it is possible to change the number of encirclements of the critical point

Figure 6.4: Example of LTF for an open-loop stable system

- Claim is that "since the LTF $L(\mathrm{j} \omega)$ is guaranteed to be far from the critical point for all frequencies, then LQR is VERY robust."
- Can study this by introducing a modification to the system, where nominally $\beta=1$, but we would like to consider:
\diamond The gain $\beta \in \mathbb{R}$
\diamond The phase $\beta \in e^{j \phi}$

- In fact, can be shown that:
- If open-loop system is stable, then any $\beta \in(0, \infty)$ yields a stable closed-loop system. For an unstable system, any $\beta \in(1 / 2, \infty)$ yields a stable closed-loop system \Rightarrow gain margins are $(1 / 2, \infty)$
- Phase margins of at least $\pm 60^{\circ}$
\Rightarrow which are both huge.

Figure 6.5: Example loop transfer functions for open-loop stable system.

Figure 6.6: Example loop transfer functions for open-loop unstable system.

- While we have large margins, be careful because changes to some of the parameters in A or B can have a very large change to $L(s)$.
- Similar statements hold for the MIMO case, but it requires singular value analysis tools.

LTF for KDE

```
% Simple example showing LTF for KDE
% 16.323 Spring 2007
% Jonathan How
% rs2.m
%
clear all;close all;
set(0, 'DefaultAxesFontSize', 14, 'DefaultAxesFontWeight','demi')
set(0, 'DefaultTextFontSize', 14, 'DefaultTextFontWeight','demi')
a=diag([-.75 -. 75 -1 -1]) +diag([[-2 0 -4],1) +diag([[2 0 4 4],-1);
b=[
            0.8180
        0.6602
        0.3420
        0.2897];
cz=[[ 0.3412 0.5341 0.7271 0.3093];
r=1e-2;
eig(a)
k=lqr(a,b,cz'*cz,r)
w=logspace(-2,2,200)';w2=-w(length(w):-1:1);
ww=[w2;0;w];
G=freqresp(a,b,k,0,1,sqrt(-1)*ww);
p=plot(G);
tt=[0:.1:2*pi]';Z=cos(tt)+sqrt(-1)*sin(tt);
hold on;plot(-1+Z,'r--');plot(Z,'r:','LineWidth',2);
plot(-1+1e-9*sqrt(-1),'x')
plot([0 0]',[\begin{array}{lll}{-3}&{3}\end{array}]','k-','LineWidth',1.5)
plot([-3 6],[0 0]','k-','LineWidth',1.5)
plot([0 -2*\operatorname{cos(pi/3)],[0 -2*sin(pi/3)]','g-','LineWidth',2)}
plot([0 -2*\operatorname{cos}(pi/3)],[0 2*sin(pi/3)]','g-','LineWidth',2)
hold off
set(p,'LineWidth',2);
axis('square')
axis([-2 4 - -3 3])
ylabel('Imag Part');xlabel('Real Part');title('Stable OL')
text(.25,-.5,'\infty')
print -dpng -r300 tf.png
%%%%%%%%%%%%%%%%%%%%%%%%%%
a=diag([-.75 -. 75 1 1 1]) +diag([-2 0 -4],1) +diag([[2 0 4],-1);
r=1e-1;
eig(a)
k=lqr(a,b,cz'*cz,r)
G=freqresp(a,b,k,0,1,sqrt (-1)*ww);
p=plot(G);
hold on;plot(-1+Z,'r--');plot(Z,'r:','LineWidth',2);
plot(-1+1e-9*sqrt(-1),'x')
plot([0 0]',[\begin{array}{lll}{-3}&{3}\end{array}]','k-','LineWidth',1.5)
plot([-3 6],[0 0]','k-','LineWidth',1.5)
plot([0 -2*\operatorname{cos}(pi/3)],[0 -2*sin(pi/3)]','g-','LineWidth',2)
plot([0 -2*cos(pi/3)],[0 2*sin(pi/3)]','g-','LineWidth',2)
hold off
set(p,'LineWidth',2)
axis('square')
axis([-3 3 - -3 3])
ylabel('Imag Part');xlabel('Real Part');title('Unstable OL')
print -dpng -r300 tf1.png
```


[^0]: ${ }^{10}$ Take partials wrt each of the variables that the integrand is a function of.

[^1]: ${ }^{11} \int u d v \equiv u v-\int v d u$

[^2]: ${ }^{12}$ Consider homogeneous system $\dot{\mathbf{x}}(t)=A(t) \mathbf{x}(t)$ with initial condition $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$. The general solution to this differential equation is given by $\mathbf{x}(t)=\Phi\left(t, t_{0}\right) \mathbf{x}\left(t_{0}\right)$ where $\Phi\left(t_{1}, t_{1}\right)=I$. Can show the following properties of the state transition matrix Φ :

 1. $\Phi\left(t_{2}, t_{0}\right)=\Phi\left(t_{2}, t_{1}\right) \Phi\left(t_{1}, t_{0}\right)$, regardless of the order of the t_{i}
 2. $\Phi(t, \tau)=\Phi(\tau, t)^{-1}$
 3. $\frac{d}{d t} \Phi\left(t, t_{0}\right)=A(t) \Phi\left(t, t_{0}\right)$
