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16.323 Lecture 5 

Calculus of Variations


Calculus of Variations
• 

• Most books cover this material well, but Kirk Chapter 4 does a particularly nice 
job.


See here for online reference.
• 
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Calculus of Variations


•	 Goal: Develop alternative approach to solve general optimization 
problems for continuous systems – variational calculus 

– Formal approach will provide new insights for constrained solutions, 
and a more direct path to the solution for other problems. 

•	 Main issue – General control problem, the cost is a function of 
functions x(t) and u(t). 

tf 

min J = h(x(tf )) + g(x(t), u(t), t)) dt 
t0 

subject to 

ẋ = f(x, u, t) 

x(t0), t0 given 

m(x(tf ), tf ) = 0 

– Call J(x(t), u(t)) a functional. 

•	 Need to investigate how to find the optimal values of a functional. 

– For a function, we found the gradient, and set it to zero to find the 
stationary points, and then investigated the higher order derivatives 
to determine if it is a maximum or minimum. 

– Will investigate something similar for functionals. 
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Maximum and Minimum of a Function • 

– A function f(x) has a local minimum at x� if 

f(x) ≥ f(x �) 

for all admissible x in �x − x�� ≤ � 

– Minimum can occur at (i) stationary point, (ii) at a boundary, or 
(iii) a point of discontinuous derivative. 

– If only consider stationary points of the differentiable function f(x), 
then statement equivalent to requiring that differential of f satisfy: 

∂f 
df	= dx = 0 

∂x 
for all small dx, which gives the same necessary condition from 
Lecture 1 

∂f 
= 0 

∂x 

•	 Note that this definition used norms to compare two vectors. Can do 
the same thing with functions distance between two functions ⇒ 

d = �x2(t) − x1(t)� 

where 

1. �x(t)� ≥ 0 for all x(t), and �x(t)� = 0 only if x(t) = 0 for all t 
in the interval of definition. 

2.	�ax(t)� = |a|�x(t)� for all real scalars a. 
3.	�x1(t) + x2(t)� ≤ �x1(t)� + �x2(t)� 

Common function norm: • �� tf	
�1/2 

�x(t)�2 = x(t)T x(t)dt 
t0 
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Maximum and Minimum of a Functional • 

– A functional J(x(t)) has a local minimum at x�(t) if 

J(x(t)) ≥ J(x �(t))


for all admissible x(t) in �x(t) − x�(t)� ≤ �


•	 Now define something equivalent to the differential of a function 
called a variation of a functional. 

– An increment of a functional


ΔJ(x(t), δx(t)) = J(x(t) + δx(t)) − J(x(t))


– A variation of the functional is a linear approximation of this 
increment: 

ΔJ(x(t), δx(t)) = δJ(x(t), δx(t)) + H.O.T. 

i.e. δJ(x(t), δx(t)) is linear in δx(t). 

Figure 5.1: Differential df versus increment Δf shown for a function, but the same 
difference holds for a functional. 

June 18, 2008 
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Figure 5.2: Visualization of perturbations to function x(t) by δx(t) – it is a potential 
change in the value of x over the entire time period of interest. Typically require 
that if x(t) is in some class (i.e., continuous), that x(t) + δx(t) is also in that class. 

Fundamental Theorem of the Calculus of Variations • 

– Let x be a function of t in the class Ω, and J(x) be a differentiable 
functional of x. Assume that the functions in Ω are not constrained 
by any boundaries. 

– If x� is an extremal function, then the variation of J must vanish 
on x�, i.e. for all admissible δx, 

δJ(x(t), δx(t)) = 0 

– Proof is in Kirk, page 121, but it is relatively straightforward. 

•	 How compute the variation? If J(x(t)) = t

t

0 

f f(x(t))dt where f has 
cts first and second derivatives with respect to x, then 

tf ∂f (x(t))
δJ(x(t), δx) =	 δxdt + f(x(tf ))δtf − f(x(t0))δt0 �t0 

∂x(t) 
tf 

= fx(x(t))δxdt + f(x(tf ))δtf − f(x(t0))δt0 
t0 

June 18, 2008 
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•	 For more general problems, first consider the cost evaluated on a 
scalar function x(t) with t0, tf and the curve endpoints fixed. 

tf 

J(x(t)) = g(x(t), ẋ(t), t)dt 
t0 

tf 

⇒ δJ(x(t), δx) = [ gx(x(t), ẋ(t), t)δx + gẋ(x(t), ẋ(t), t)δẋ] dt 
t0 

– Note that 
d 

δẋ	 = δx 
dt


so δx and δẋ are not independent.


•	 Integrate by parts: � � 
udv ≡ uv − vdu 

with u = gẋ and dv = δ ẋdt to get: 
tf 

δJ(x(t), δx) = gx(x(t), ẋ(t), t)δxdt + [gẋ(x(t), ẋ(t), t)δx] 
t
t
f 

0 
t0 

tf	 d − 
dt
gẋ(x(t), ẋ(t), t)δxdt � t0� �tf d 

= gx(x(t), ẋ(t), t) − gẋ(x(t), ẋ(t), t) δx(t)dt 
dtt0 

+ [gẋ(x(t), ẋ(t), t)δx]t
t

0 

f 

•	 Since x(t0), x(tf ) given, then δx(t0) = δx(tf ) = 0, yielding 
tf	 d 

δJ(x(t), δx) = gx(x(t), ẋ(t), t) − gẋ(x(t), ẋ(t), t) δx(t)dt 
dtt0 
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Recall need δJ = 0 for all admissible δx(t), which are arbitrary within • 
(t0, tf ) the (first order) necessary condition for a maximum or ⇒ 
minimum is called Euler Equation: 

∂g(x(t), ẋ(t), t) 
∂x 

− 
d 
dt 

� 
∂g(x(t), ẋ(t), t) 

∂ ẋ 

� 

= 0 

Example: Find the curve that gives the shortest distance between 2 • 
points in a plane (x0, y0) and (xf, yf ). 

– Cost function – sum of differential arc lengths: � xf 
� xf � 

J = ds = (dx)2 + (dy)2 

x0 � xf 

� x0 � 
dy 
�2 

= 1 + dx 
x0 

dx 

– Take y as dependent variable, and x as independent one 

dy 
dx 
→ ẏ

– New form of the cost: 
xf � xf 

J = 1 + ẏ2 dx g(ẏ)dx→
x0 x0 

– Take partials: ∂g/∂y = 0, and 

d ∂g d ∂g dẏ
= 

dx ∂ẏ dẏ ∂ẏ dx 
d ẏ ÿ

= ÿ = = 0 
dẏ (1 + ẏ2)1/2 (1 + ẏ2)3/2 

which implies that ÿ = 0 

– Most general curve with ÿ = 0 is a line y = c1x + c2 
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•	 Can generalize the problem by including several (N) functions xi(t) 

and possibly free endpoints 
tf 

J(x(t)) = g(x(t), ẋ(t), t)dt 
t0


with t0, tf , x(t0) fixed.


•	 Then (drop the arguments for brevity) 
tf 

δJ(x(t), δx) = [ gxδx(t) + gẋδẋ(t)] dt 
t0 

– Integrate by parts to get: 
tf d 

δJ(x(t), δx) =	 gẋ δx(t)dt + gẋ(x(tf ), ẋ(tf ), tf )δx(tf )gx − 
dtt0 

• The requirement then is that for t ∈ (t0, tf ), x(t) must satisfy


∂g d ∂g 
∂x 

− 
dt∂ẋ

= 0 

where x(t0) = x0 which are the given N boundary conditions, and 
the remaining N more BC follow from: 

– x(tf ) = xf if xf is given as fixed, 
– If x(tf ) are free, then


∂g(x(t), ẋ(t), t)

= 0 

∂ẋ(tf ) 

•	 Note that we could also have a mixture, where parts of x(tf ) are given 
as fixed, and other parts are free – just use the rules above on each 
component of xi(tf ) 
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• Now consider a slight variation: the goal is to minimize


tf 

J(x(t)) = g(x(t), ẋ(t), t)dt 
t0 

with t0, x(t0) fixed, tf free, and various constraints on x(tf ) 

• Compute variation of the functional considering 2 candidate solutions: 

– x(t), which we consider to be a perturbation of the optimal x�(t) 
(that we need to find) 

tf 

δJ(x �(t), δx) = [ gxδx(t) + gẋδẋ(t)] dt + g(x �(tf ), ẋ
�(tf ), tf )δtf 

t0 

– Integrate by parts to get: 
tf d 

δJ(x �(t), δx) = gx − 
dt
gẋ δx(t)dt 

t0 

+ gẋ(x �(tf ), ẋ
�(tf ), tf )δx(tf ) 

+ g(x �(tf ), ẋ
�(tf ), tf )δtf 

• Looks standard so far, but we have to be careful how we handle the 
terminal conditions 

June 18, 2008 
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Figure 5.3: Comparison of possible changes to function at end time when tf is free. 

•	 By definition, δx(tf ) is the difference between two admissible func

tions at time tf (in this case the optimal solution x� and another 
candidate x). 

– But in this case, must also account for possible changes to δtf . 

– Define δxf as being the difference between the ends of the two 
possible functions – total possible change in the final state: 

δxf ≈ δx(tf ) + ẋ�(tf )δtf 

so	δx(tf ) = δxf in general. 

•	 Substitute to get 
tf d 

δJ(x �(t), δx) = gx − gẋ δx(t)dt + gẋ(x �(tf ), ẋ
�(tf ), tf )δxf

dtt0 

+	 [g(x �(tf ), ẋ
�(tf ), tf ) − gẋ(x �(tf ), ẋ

�(tf ), tf )ẋ
�(tf )] δtf 

June 18, 2008 
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Independent of the terminal constraint, the conditions on the solution • 
x�(t) to be an extremal for this case are that it satisfy the Euler 
equations 

gx(x �(t), ẋ �(t), t) − 
d 
dt
gẋ(x �(t), ẋ �(t), t) = 0 

– Now consider the additional constraints on the individual elements 
of x�(tf ) and tf to find the other boundary conditions 

•	 Type of terminal constraints determines how we treat δxf and δtf 

1. Unrelated 

2. Related by a simple function x(tf ) = Θ(tf ) 

3. Specified by a more complex constraint m(x(tf ), tf ) = 0 

•	 Type 1: If tf and x(tf ) are free but unrelated, then δxf and δtf are 
independent and arbitrary their coefficients must both be zero. ⇒ 

gx(x �(t), ẋ �(t), t) − 
d 
dt
gẋ(x �(t), ẋ �(t), t) = 0 

g(x �(tf ), ẋ �(tf ), tf ) − gẋ(x �(tf ), ẋ �(tf ), tf ) ̇x �(tf ) = 0 

gẋ(x �(tf ), ẋ �(tf ), tf ) = 0 

– Which makes it clear that this is a two-point boundary 
value problem, as we now have conditions at both t0 and tf 

June 18, 2008 
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• Type 2: If tf and x(tf ) are free but related as x(tf ) = Θ(tf ), then 

dΘ 
δxf = (tf )δtf

dt 

– Substitute and collect terms gives 
tf d dΘ 

δJ = gx − gẋ δxdt + gẋ(x �(tf ), ẋ
�(tf ), tf ) (tf )

dt dtt0 

+ g(x �(tf ), ẋ
�(tf ), tf ) − gẋ(x �(tf ), ẋ

�(tf ), tf )ẋ
�(tf ) δtf 

– Set coefficient of δtf to zero (it is arbitrary) full conditions ⇒ 

gx(x �(t), ẋ �(t), t) − 
d 
dt
gẋ(x �(t), ẋ �(t), t) = 0 

gẋ(x �(tf ), ẋ �(tf ), tf ) 

� 
dΘ 
dt 

(tf ) − ẋ �(tf ) 

� 

+ g(x �(tf ), ẋ �(tf ), tf ) = 0 

– Last equation called the Transversality Condition 

To handle third type of terminal condition, must address solution of • 
constrained problems. 

June 18, 2008 
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Figure 5.4: Summary of possible terminal constraints (Kirk, page 151)
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• Find the shortest curve from the origin to a specified line. 

• Goal: minimize the cost functional (See page 5–6) 
tf � 

J = 1 + ẋ2(t) dt 
t0 

given that t0 = 0, x(0) = 0, and tf and x(tf ) are free, but x(tf ) 
must line on the line 

θ(t) = −5t + 15 

• Since g(x, ˙ x, Euler equation reduces to x, t) is only a function of ˙

d ẋ�(t) 
= 0 

dt [1 + ẋ�(t)2]1/2 

which after differentiating and simplifying, gives ẍ�(t) = 0 answer ⇒ 
is a straight line 

x�(t) = c1t + c0 

but since x(0) = 0, then c0 = 0 

• Transversality condition gives 

[1 + ˙
x

x

˙ �

�

(

(

t

t
f

f 

)

)2]1/2 
[−5 − ẋ�(tf )] + [1 + ẋ�(tf )

2]1/2 = 0 

that simplifies to 

[ẋ�(tf )] [−5 − ẋ�(tf )] + [1 + ẋ�(tf )
2] = −5ẋ�(tf ) + 1 = 0 

so that ẋ�(tf ) = c1 = 1/5 

– Not a surprise, as this gives the slope of a line orthogonal to the 
constraint line. 

• To find final time: x(tf ) = −5tf + 15 = tf/5 which gives tf ≈ 2.88 

June 18, 2008 
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• Had the terminal constraint been a bit more challenging, such as 

1 dΘ 
Θ(t) = 

2
([t − 5]2 − 1) ⇒ 

dt 
= t − 5 

• Then the transversality condition gives 

ẋ�(tf )
[tf − 5 − ẋ�(tf )] + [1 + ẋ�(tf )

2]1/2 = 0 
[1 + ẋ�(tf )2]1/2 

[ẋ�(tf )] [tf − 5 − ẋ�(tf )] + [1 + ẋ�(tf )
2] = 0 

c1 [tf − 5] + 1 = 0 

• Now look at x�(t) and Θ(t) at tf 

x�(tf ) = −
(tf

t

− 
f 

5) 
= 

1

2
([tf − 5]2 − 1)


which gives tf = 3, c1 = 1/2 and x�(tf ) = t/2


Figure 5.5: Quadratic terminal constraint. 

June 18, 2008 
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Corner Conditions 

•	 Key generalization of the preceding is to allow the possibility that the 
solutions not be as smooth 

– Assume that x(t) cts, but allow discontinuities in ẋ(t), which occur 
at corners. 

– Naturally occur when intermediate state constraints imposed, or 
with jumps in the control signal. 

•	 Goal: with t0, tf , x(t0), and x(tf ) fixed, minimize cost functional 
tf 

J(x(t), t) = g(x(t), ẋ(t), t)dt 
t0 

– Assume g has cts first/second derivatives wrt all arguments 

– Even so, ẋ discontinuity could lead to a discontinuity in g. 

•	 Assume that ẋ has a discontinuity at some time t1 ∈ (t0, tf ), which 
is not fixed (or typically known). Divide cost into 2 regions: 

t1	 tf 

J(x(t), t) = g(x(t), ẋ(t), t)dt + g(x(t), ẋ(t), t)dt 
t0	 t1 

•	 Expand as before – note that t1 is not fixed 
t1	 ∂g ∂g 

δJ = δx + δẋ 1 )δt1dt + g(t−
∂x ∂ẋt0 

tf	 ∂g ∂g ++ δx + δẋ dt − g(t1 )δt1∂x ∂ẋt1 

June 18, 2008 
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Now IBP 
t1 d 

δJ = gx − x) 1 )δt1 + gẋ 1 )δx(t−1 )(g ˙ δxdt + g(t− (t−
dtt0 

tf d + + ++ gx − (gẋ) δxdt − g(t1 )δt1 − gẋ(t1 )δx(t1 )dtt1 

As on 5–9, must constrain δx1, which is the total variation in the • 
solution at time t1 

from lefthand side δx1 = δx(t1
−) + ẋ(t1

−)δt1 
+ +from righthand side δx1 = δx(t1 ) + ẋ(t1 )δt1 

– Continuity requires that these two expressions for δx1 be equal 

– Already know that it is possible that ẋ(t−1 ) =� ẋ(t+1 ), so possible 
that δx(t−1 ) =� δx(t+1 ) as well. 

Substitute: 
t1 d � � 

δJ = gx − (gẋ) δxdt + g(t−1 ) − gẋ(t
−
1 )ẋ(t−1 ) δt1 + gẋ(t

−
1 )δx1

dt � t0 � �tf d � � 
+ + + ++ gx − (gẋ) δxdt − g(t1 ) − gẋ(t1 )ẋ(t1 ) δt1 − gẋ(t1 )δx1

dtt1 

Necessary conditions are then: • 

gx − 
d 
dt 

(gẋ) = 0 t ∈ (t0, tf ) 

gẋ(t
−
1 ) = gẋ(t+ 

1 ) 

g(t−1 ) − gẋ(t
−
1 ) ̇x(t−1 ) = g(t+ 

1 ) − gẋ(t
+ 
1 ) ̇x(t+ 

1 ) 

– Last two are the Weierstrass-Erdmann conditions 

June 18, 2008 
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•	 Necessary conditions given for a special set of the terminal conditions, 
but the form of the internal conditions unchanged by different terminal 
constraints 

– With several corners, there are a set of constraints for each 

– Can be used to demonstrate that there isn’t a corner 

•	 Typical instance that induces corners is intermediate time constraints 
of the form x(t1) = θ(t1). 

– i.e., the solution must touch a specified curve at some point in time 
during the solution. 

•	 Slightly complicated in this case, because the constraint couples the 
allowable variations in δx1 and δt since 

δx1 = 
dθ 
δt1 = θ̇δt1

dt 
– But can eliminate δx1 in favor of δt1 in the expression for δJ to 

get new corner condition: 

+ + + + g(t−1 )+gẋ(t
−
1 ) θ̇(t−1 ) − ẋ(t−1 ) = g(t1 )+gẋ(t1 ) θ̇(t1 ) − ẋ(t1 ) 

(t+ – So now gẋ(t−1 ) = gẋ 1 ) no longer needed, but have x(t1) = θ(t1) 

June 18, 2008 



� 

=	� = � 

Spr 2008	 16.323 5–18 Corner Example 

•	 Find shortest length path joining the points x = 0, t = −2 and 
x = 0, t = 1 that touches the curve x = t2 + 3 at some point 

In this case, J = 
� 1 √

1 + ẋ2dt with x(1) = x(−2) = 0 •	
and x(t1) = t21 + 3 

−2 

•	 Note that since g is only a function of ẋ, then solution x(t) will only 
be linear in each segment (see 5–13) 

segment 1 x(t) = a + bt 

segment 2 x(t) = c + dt 

– Terminal conditions: x(−2) = a − 2b = 0 and x(1) = c + d = 0 

•	 Apply corner condition: 

1 + ẋ(t−1 )
2 + � 

ẋ(t−1 ) � 
2t−1 − ẋ(t1

−) 
� 

1 + ẋ(t−1 )
2 

1 + 2t1
−ẋ(t1

−) 1 + 2t1
+ ẋ(t1

+) 

1 + ẋ(t−1 )
2 1 + ẋ(t+1 )

2 

which gives: 
1 + 2bt1 1 + 2dt1 

=
√
1 + b2 

√
1 + d2


•	 Solve using fsolve to get: 

a = 3.0947, b = 1.5474, c = 2.8362, d = −2.8362, t1 = −0.0590 
function F=myfunc(x); %

% x=[a b c d t1]; %

F=[x(1)-2*x(2);


x(3)+x(4);

(1+2*x(2)*x(5))/(1+x(2)^2)^(1/2) - (1+2*x(4)*x(5))/(1+x(4)^2)^(1/2);

x(1)+x(2)*x(5) - (x(5)^2+3);

x(3)+x(4)*x(5) - (x(5)^2+3)];


return %

x = fsolve(’myfunc’,[2 1 2 -2 0]’)


June 18, 2008 
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Constrained Solutions 

•	 Now consider variations of the basic problem that include constraints. 

•	 For example, if the goal is to find the extremal function x� that 
minimizes � tf 

J(x(t), t) = g(x(t), ẋ(t), t)dt 
t0 

subject to the constraint that a given set of n differential equations 
be satisfied 

f(x(t), ẋ(t), t) = 0 

where we assume that x ∈ Rn+m (take tf and x(tf ) to be fixed) 

•	 As with the basic optimization problems in Lecture 2, proceed by 
augmenting cost with the constraints using Lagrange multipliers 

– Since the constraints must be satisfied at all time, these multipliers 
are also assumed to be functions of time. 

tf �	 � 
Ja(x(t), t) = g(x, ẋ, t) + p(t)T f(x, ẋ, t) dt 

t0 

– Does not change the cost if the constraints are satisfied. 

– Time varying Lagrange multipliers give more degrees of freedom in 
specifying how the constraints are added. 

•	 Take variation of augmented functional considering perturbations to 
both x(t) and p(t) 

δJ(x(t), δx(t), p(t), δp(t)) 
tf �� � � � � 

= gx + p T fx δx(t) + gẋ + p T fẋ δẋ(t) + fTδp(t) dt 
t0 

June 18, 2008 
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As before, integrate by parts to get: • 

δJ(x(t), δx(t), p(t), δp(t))� �� � �tf � � d � � 
= gx + p T fx − 

dt 
gẋ + p T fẋ δx(t) + fTδp(t) dt 

t0 

To simplify things a bit, define • 

ga(x(t), ẋ(t), t) ≡ g(x(t), ẋ(t), t) + p(t)T f(x(t), ẋ(t), t) 

On the extremal, the variation must be zero, but since δx(t) and• 
δp(t) can be arbitrary, can only occur if 

∂ga(x(t), ẋ(t), t) 
∂x 

− 
d 
dt 

� 
∂ga(x(t), ẋ(t), t) 

∂ ẋ 

� 

= 0 

f(x(t), ẋ(t), t) = 0 

– which are obviously a generalized version of the Euler equations 
obtained before. 

Note similarity of the definition of ga here with the Hamiltonian on • 
page 4–4. 

Will find that this generalization carries over to future optimizations • 
as well. 
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General Terminal Conditions 

•	 Now consider Type 3 constraints on 5–10, which are a very general 
form with tf free and x(tf ) given by a condition: 

m(x(tf ), tf ) = 0 

•	 Constrained optimization, so as before, augment the cost functional 
tf 

J(x(t), t) = h(x(tf ), tf ) + g(x(t), ẋ(t), t)dt 
t0 

with the constraint using Lagrange multipliers: 
tf


Ja(x(t), ν, t) = h(x(tf ), tf )+νT m(x(tf ), tf )+ g(x(t), ẋ(t), t)dt

t0


•	 Considering changes to x(t), tf , x(tf ) and ν, the variation for Ja is 

δJa = hx(tf )δxf + htf δtf + m T (tf )δν + νT mx(tf )δxf + mtf (tf )δtf 

tf 

+ [gxδx + gẋδẋ] dt + g(tf )δtf 
t0 

= hx(tf ) + νT mx(tf ) δxf + htf + νT mtf (tf ) + g(tf ) δtf 

tf d 
+m T (tf )δν + gx − 

dt
gẋ δxdt + gẋ(tf )δx(tf ) 

t0 

– Now use that δxf = δx(tf ) + ẋ(tf )δtf as before to get 

δJa = hx(tf ) + νT mx(tf ) + gẋ(tf ) δxf 

+ htf + νT mtf (tf ) + g(tf ) − gẋ(tf )ẋ(tf ) δtf + m T (tf )δν 
tf d 

+	 gẋ δxdtgx − 
dtt0 
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Looks like a bit of a mess, but we can clean it up a bit using • 

w(x(tf ), ν, tf ) = h(x(tf ), tf ) + νT m(x(tf ), tf ) 

to get 

δJa = [wx(tf ) + g ˙ (tf )] δxf� x � 
+ wtf + g(tf ) − gẋ(tf )ẋ(tf ) δtf + m T (tf )δν 

tf d 
+ gx − gẋ δxdt 

dtt0 

– Given the extra degrees of freedom in the multipliers, can treat all 
of the variations as independent all coefficients must be zero to ⇒ 
achieve δJa = 0 

So the necessary conditions are • 

gx − 
d 
dt
gẋ = 0 (dim n) 

wx(tf ) + gẋ(tf ) = 0 (dim n) 

wtf + g(tf ) − gẋ(tf ) ̇x(tf ) = 0 (dim 1) 

– With x(t0) = x0 (dim n) and m(x(tf ), tf ) = 0 (dim m) combined 
with last 2 conditions 2n + m + 1 constraints ⇒ 

– Solution of Eulers equation has 2n constants of integration for x(t), 
and must find ν (dim m) and tf 2n + m + 1 unknowns ⇒ 

Some special cases: • 

– If tf is fixed, h = h(x(tf )), m m(x(tf )) and we lose the last → 
condition in box – others remain unchanged 

– If tf is fixed, x(tf ) free, then there is no m, no ν and w reduces 
to h. 

Kirk’s book also considers several other type of constraints. • 
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