16.323 Principles of Optimal Control Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

16.323 Lecture 5

Calculus of Variations

- Calculus of Variations
- Most books cover this material well, but Kirk Chapter 4 does a particularly nice job.
- See here for online reference.

Figure by MIT OpenCourseWare.

Calculus of Variations

- Formal approach will provide new insights for constrained solutions, and a more direct path to the solution for other problems.
- Main issue General control problem, the cost is a function of functions $\mathbf{x}(t)$ and $\mathbf{u}(t)$.

$$\min J = h(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t)) dt$$

subject to

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$
$$\mathbf{x}(t_0), t_0 \text{ given}$$
$$m(\mathbf{x}(t_f), t_f) = 0$$

- Call $J(\mathbf{x}(t), \mathbf{u}(t))$ a functional.

- Need to investigate how to find the optimal values of a functional.
 - For a function, we found the gradient, and set it to zero to find the stationary points, and then investigated the higher order derivatives to determine if it is a maximum or minimum.
 - Will investigate something similar for functionals.

• Maximum and Minimum of a Function

– A function $f(\mathbf{x})$ has a local minimum at \mathbf{x}^{\star} if

$$f(\mathbf{x}) \geq f(\mathbf{x}^\star)$$

for all admissible ${\bf x}$ in $\|{\bf x}-{\bf x}^\star\| \leq \epsilon$

- Minimum can occur at (i) stationary point, (ii) at a boundary, or
 (iii) a point of discontinuous derivative.
- If only consider stationary points of the differentiable function $f(\mathbf{x})$, then statement equivalent to requiring that differential of f satisfy:

$$df = \frac{\partial f}{\partial \mathbf{x}} d\mathbf{x} = 0$$

for all small $d\mathbf{x}$, which gives the same necessary condition from Lecture 1

$$\frac{\partial f}{\partial \mathbf{x}} = 0$$

 Note that this definition used norms to compare two vectors. Can do the same thing with functions ⇒ distance between two functions

$$d = \|\mathbf{x}_2(t) - \mathbf{x}_1(t)\|$$

where

- 1. $\|\mathbf{x}(t)\| \ge 0$ for all $\mathbf{x}(t)$, and $\|\mathbf{x}(t)\| = 0$ only if $\mathbf{x}(t) = 0$ for all t in the interval of definition.
- 2. $||a\mathbf{x}(t)|| = |a|||\mathbf{x}(t)||$ for all real scalars a.
- 3. $\|\mathbf{x}_1(t) + \mathbf{x}_2(t)\| \le \|\mathbf{x}_1(t)\| + \|\mathbf{x}_2(t)\|$
- Common function norm:

$$\|\mathbf{x}(t)\|_2 = \left(\int_{t_0}^{t_f} \mathbf{x}(t)^T \mathbf{x}(t) dt\right)^{1/2}$$

• Maximum and Minimum of a Functional

- A functional $J(\mathbf{x}(t))$ has a local minimum at $\mathbf{x}^{\star}(t)$ if

$$J(\mathbf{x}(t)) \ge J(\mathbf{x}^{\star}(t))$$

for all admissible $\mathbf{x}(t)$ in $\|\mathbf{x}(t) - \mathbf{x}^{\star}(t)\| \leq \epsilon$

- Now define something equivalent to the differential of a function called a variation of a functional.
 - An **increment** of a functional

$$\Delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) = J(\mathbf{x}(t) + \delta \mathbf{x}(t)) - J(\mathbf{x}(t))$$

A variation of the functional is a linear approximation of this increment:

$$\Delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) = \delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) + H.O.T.$$

i.e. $\delta J(\mathbf{x}(t), \delta \mathbf{x}(t))$ is linear in $\delta \mathbf{x}(t)$.

Figure by MIT OpenCourseWare.

Figure 5.1: Differential df versus increment Δf shown for a function, but the same difference holds for a functional.

Figure by MIT OpenCourseWare.

Figure 5.2: Visualization of perturbations to function x(t) by $\delta x(t)$ – it is a potential change in the value of x over the entire time period of interest. Typically require that if x(t) is in some class (i.e., continuous), that $x(t) + \delta x(t)$ is also in that class.

• Fundamental Theorem of the Calculus of Variations

- Let x be a function of t in the class Ω , and $J(\mathbf{x})$ be a differentiable functional of x. Assume that the functions in Ω are not constrained by any boundaries.
- If \mathbf{x}^* is an extremal function, then the variation of J must vanish on \mathbf{x}^* , i.e. for all admissible $\delta \mathbf{x}$,

$$\delta J(\mathbf{x}(t), \delta \mathbf{x}(t)) = 0$$

- Proof is in Kirk, page 121, but it is relatively straightforward.

• How compute the variation? If $J(\mathbf{x}(t)) = \int_{t_0}^{t_f} f(\mathbf{x}(t)) dt$ where f has cts first and second derivatives with respect to \mathbf{x} , then

$$\begin{split} \delta J(\mathbf{x}(t), \delta \mathbf{x}) &= \int_{t_0}^{t_f} \left\{ \frac{\partial f(\mathbf{x}(t))}{\partial \mathbf{x}(t)} \right\} \delta \mathbf{x} dt + f(\mathbf{x}(t_f)) \delta t_f - f(\mathbf{x}(t_0)) \delta t_0 \\ &= \int_{t_0}^{t_f} f_{\mathbf{x}}(\mathbf{x}(t)) \delta \mathbf{x} dt + f(\mathbf{x}(t_f)) \delta t_f - f(\mathbf{x}(t_0)) \delta t_0 \end{split}$$

Spr 2008 Variation Examples: Scalar ^{16.323 5–5}

• For more general problems, first consider the cost evaluated on a scalar function x(t) with t_0 , t_f and the curve endpoints fixed.

$$\begin{aligned} J(x(t)) &= \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt \\ \Rightarrow \quad \delta J(x(t), \delta x) &= \int_{t_0}^{t_f} \left[\ g_x(x(t), \dot{x}(t), t) \delta x + g_{\dot{x}}(x(t), \dot{x}(t), t) \delta \dot{x} \right] dt \end{aligned}$$

Note that

$$\delta \dot{x} = \frac{d}{dt} \delta x$$

so δx and $\delta \dot{x}$ are not independent.

• Integrate by parts:

$$\int u dv \equiv uv - \int v du$$

with $u = g_{\dot{x}}$ and $dv = \delta \dot{x} dt$ to get:

$$\begin{split} \delta J(x(t), \delta x) &= \int_{t_0}^{t_f} g_x(x(t), \dot{x}(t), t) \delta x dt + \left[g_{\dot{x}}(x(t), \dot{x}(t), t) \delta x \right]_{t_0}^{t_f} \\ &- \int_{t_0}^{t_f} \frac{d}{dt} g_{\dot{x}}(x(t), \dot{x}(t), t) \delta x dt \\ &= \int_{t_0}^{t_f} \left[g_x(x(t), \dot{x}(t), t) - \frac{d}{dt} g_{\dot{x}}(x(t), \dot{x}(t), t) \right] \delta x(t) dt \\ &+ \left[g_{\dot{x}}(x(t), \dot{x}(t), t) \delta x \right]_{t_0}^{t_f} \end{split}$$

• Since
$$x(t_0)$$
, $x(t_f)$ given, then $\delta x(t_0) = \delta x(t_f) = 0$, yielding

$$\delta J(x(t), \delta x) = \int_{t_0}^{t_f} \left[g_x(x(t), \dot{x}(t), t) - \frac{d}{dt} g_{\dot{x}}(x(t), \dot{x}(t), t) \right] \delta x(t) dt$$

June 18, 2008

16.323 5-6

Spr 2008

 Recall need δJ = 0 for all admissible δx(t), which are arbitrary within (t₀, t_f) ⇒ the (first order) necessary condition for a maximum or minimum is called Euler Equation:

$$\frac{\partial g(x(t), \dot{x}(t), t)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g(x(t), \dot{x}(t), t)}{\partial \dot{x}} \right) = 0$$

- **Example**: Find the curve that gives the shortest distance between 2 points in a plane (x_0, y_0) and (x_f, y_f) .
 - Cost function sum of differential arc lengths:

$$J = \int_{x_0}^{x_f} ds = \int_{x_0}^{x_f} \sqrt{(dx)^2 + (dy)^2} \\ = \int_{x_0}^{x_f} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

- Take y as dependent variable, and x as independent one

$$\frac{dy}{dx} \to \dot{y}$$

- New form of the cost:

$$J = \int_{x_0}^{x_f} \sqrt{1 + \dot{y}^2} \, dx \to \int_{x_0}^{x_f} g(\dot{y}) dx$$

- Take partials: $\partial g/\partial y = 0$, and

$$\frac{d}{dx} \left(\frac{\partial g}{\partial \dot{y}} \right) = \frac{d}{d\dot{y}} \left(\frac{\partial g}{\partial \dot{y}} \right) \frac{d\dot{y}}{dx} = \frac{d}{d\dot{y}} \left(\frac{\dot{y}}{(1+\dot{y}^2)^{1/2}} \right) \ddot{y} = \frac{\ddot{y}}{(1+\dot{y}^2)^{3/2}} = 0$$

which implies that $\ddot{y} = 0$

- Most general curve with $\ddot{y} = 0$ is a line $y = c_1 x + c_2$

Vector Functions

• Can generalize the problem by including several (N) functions $x_i(t)$ and possibly free endpoints

$$J(\mathbf{x}(t)) = \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

with t_0 , t_f , $\mathbf{x}(t_0)$ fixed.

• Then (drop the arguments for brevity)

$$\delta J(\mathbf{x}(t), \delta \mathbf{x}) = \int_{t_0}^{t_f} \left[g_{\mathbf{x}} \delta \mathbf{x}(t) + g_{\dot{\mathbf{x}}} \delta \dot{\mathbf{x}}(t) \right] dt$$

- Integrate by parts to get:

$$\delta J(\mathbf{x}(t), \delta \mathbf{x}) = \int_{t_0}^{t_f} \left[g_{\mathbf{x}} - \frac{d}{dt} g_{\dot{\mathbf{x}}} \right] \delta \mathbf{x}(t) dt + g_{\dot{\mathbf{x}}}(\mathbf{x}(t_f), \dot{\mathbf{x}}(t_f), t_f) \delta \mathbf{x}(t_f)$$

• The requirement then is that for $t \in (t_0, t_f)$, $\mathbf{x}(t)$ must satisfy

$$\frac{\partial g}{\partial \mathbf{x}} - \frac{d}{dt} \frac{\partial g}{\partial \dot{\mathbf{x}}} = 0$$

where $\mathbf{x}(t_0) = \mathbf{x}_0$ which are the given N boundary conditions, and the remaining N more BC follow from:

 $-\mathbf{x}(t_f) = \mathbf{x}_f$ if \mathbf{x}_f is given as fixed, $- \text{ If } \mathbf{x}(t_f)$ are free, then

$$\frac{\partial g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)}{\partial \dot{\mathbf{x}}(t_f)} = 0$$

• Note that we could also have a mixture, where parts of $\mathbf{x}(t_f)$ are given as fixed, and other parts are free – just use the rules above on each component of $x_i(t_f)$

Free Terminal Time

• Now consider a slight variation: the goal is to minimize

$$J(\mathbf{x}(t)) = \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

with t_0 , $\mathbf{x}(t_0)$ fixed, t_f free, and various constraints on $\mathbf{x}(t_f)$

• Compute variation of the functional considering 2 candidate solutions: $-\mathbf{x}(t)$, which we consider to be a perturbation of the optimal $\mathbf{x}^{\star}(t)$ (that we need to find)

$$\delta J(\mathbf{x}^{\star}(t), \delta \mathbf{x}) = \int_{t_0}^{t_f} \left[g_{\mathbf{x}} \delta \mathbf{x}(t) + g_{\dot{\mathbf{x}}} \delta \dot{\mathbf{x}}(t) \right] dt + g(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \delta t_f$$

- Integrate by parts to get:

$$\delta J(\mathbf{x}^{\star}(t), \delta \mathbf{x}) = \int_{t_0}^{t_f} \left[g_{\mathbf{x}} - \frac{d}{dt} g_{\dot{\mathbf{x}}} \right] \delta \mathbf{x}(t) dt + g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \delta \mathbf{x}(t_f) + g(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \delta t_f$$

 Looks standard so far, but we have to be careful how we handle the terminal conditions

Figure by MIT OpenCourseWare.

Figure 5.3: Comparison of possible changes to function at end time when t_f is free.

- By definition, $\delta \mathbf{x}(t_f)$ is the difference between two admissible functions at time t_f (in this case the optimal solution \mathbf{x}^* and another candidate \mathbf{x}).
 - But in this case, must also account for possible changes to δt_f .
 - Define $\delta \mathbf{x}_f$ as being the difference between the ends of the two possible functions total possible change in the final state:

$$\delta \mathbf{x}_f \approx \delta \mathbf{x}(t_f) + \dot{\mathbf{x}}^{\star}(t_f) \delta t_f$$

so $\delta \mathbf{x}(t_f) \neq \delta \mathbf{x}_f$ in general.

• Substitute to get

$$\delta J(\mathbf{x}^{\star}(t), \delta \mathbf{x}) = \int_{t_0}^{t_f} \left[g_{\mathbf{x}} - \frac{d}{dt} g_{\dot{\mathbf{x}}} \right] \delta \mathbf{x}(t) dt + g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \delta \mathbf{x}_f + \left[g(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) - g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \dot{\mathbf{x}}^{\star}(t_f) \right] \delta t_f$$

• Independent of the terminal constraint, the conditions on the solution $\mathbf{x}^{\star}(t)$ to be an extremal for this case are that it satisfy the Euler equations

$$g_{\mathbf{x}}(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t) = 0$$

- Now consider the additional constraints on the individual elements of $\mathbf{x}^{\star}(t_f)$ and t_f to find the other boundary conditions

- Type of terminal constraints determines how we treat $\delta \mathbf{x}_f$ and δt_f 1. Unrelated
 - 2. Related by a simple function $\mathbf{x}(t_f) = \Theta(t_f)$
 - 3. Specified by a more complex constraint $\mathbf{m}(\mathbf{x}(t_f), t_f) = 0$
- **Type 1:** If t_f and $\mathbf{x}(t_f)$ are free but unrelated, then $\delta \mathbf{x}_f$ and δt_f are independent and arbitrary \Rightarrow their coefficients must both be zero.

$$g_{\mathbf{x}}(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t) = 0$$
$$g(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) - g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f)\dot{\mathbf{x}}^{\star}(t_f) = 0$$
$$g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) = 0$$

- Which makes it clear that this is a **two-point boundary** value problem, as we now have conditions at both t_0 and t_f

• Type 2: If t_f and $\mathbf{x}(t_f)$ are free but related as $\mathbf{x}(t_f) = \Theta(t_f)$, then

$$\delta \mathbf{x}_f = \frac{d\Theta}{dt}(t_f)\delta t_f$$

- Substitute and collect terms gives

$$\begin{split} \delta J &= \int_{t_0}^{t_f} \left[g_{\mathbf{x}} - \frac{d}{dt} g_{\dot{\mathbf{x}}} \right] \delta \mathbf{x} dt + \left[g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \frac{d\Theta}{dt}(t_f) \right. \\ &+ \left. g(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) - g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \dot{\mathbf{x}}^{\star}(t_f) \right] \delta t_f \end{split}$$

- Set coefficient of δt_f to zero (it is arbitrary) \Rightarrow full conditions

$$g_{\mathbf{x}}(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t) - \frac{d}{dt}g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t) = 0$$
$$g_{\dot{\mathbf{x}}}(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) \left[\frac{d\Theta}{dt}(t_f) - \dot{\mathbf{x}}^{\star}(t_f)\right] + g(\mathbf{x}^{\star}(t_f), \dot{\mathbf{x}}^{\star}(t_f), t_f) = 0$$

- Last equation called the Transversality Condition

• To handle third type of terminal condition, must address solution of constrained problems.

Image removed due to copyright restrictions.

Figure 5.4: Summary of possible terminal constraints (Kirk, page 151)

Example: 5–1

- Find the shortest curve from the origin to a specified line.
- **Goal:** minimize the cost functional (See page 5–6)

$$J = \int_{t_0}^{t_f} \sqrt{1 + \dot{x}^2(t)} \ dt$$

given that $t_0 = 0$, x(0) = 0, and t_f and $x(t_f)$ are free, but $x(t_f)$ must line on the line

$$\theta(t) = -5t + 15$$

• Since $g(x, \dot{x}, t)$ is only a function of \dot{x} , Euler equation reduces to

$$\frac{d}{dt} \left[\frac{\dot{x}^{\star}(t)}{[1 + \dot{x}^{\star}(t)^2]^{1/2}} \right] = 0$$

which after differentiating and simplifying, gives $\ddot{x}^{\star}(t) = 0 \Rightarrow$ answer is a straight line

$$x^{\star}(t) = c_1 t + c_0$$

but since x(0) = 0, then $c_0 = 0$

• Transversality condition gives

$$\left[\frac{\dot{x}^{\star}(t_f)}{[1+\dot{x}^{\star}(t_f)^2]^{1/2}}\right] \left[-5-\dot{x}^{\star}(t_f)\right] + \left[1+\dot{x}^{\star}(t_f)^2\right]^{1/2} = 0$$

that simplifies to

$$[\dot{x}^{\star}(t_f)] [-5 - \dot{x}^{\star}(t_f)] + [1 + \dot{x}^{\star}(t_f)^2] = -5\dot{x}^{\star}(t_f) + 1 = 0$$

so that $\dot{x}^{\star}(t_f) = c_1 = 1/5$

 Not a surprise, as this gives the slope of a line orthogonal to the constraint line.

• To find final time: $x(t_f) = -5t_f + 15 = t_f/5$ which gives $t_f \approx 2.88$

Example: 5–2

• Had the terminal constraint been a bit more challenging, such as

$$\Theta(t) = \frac{1}{2}([t-5]^2 - 1) \Rightarrow \frac{d\Theta}{dt} = t - 5$$

• Then the transversality condition gives

$$\left[\frac{\dot{x}^{\star}(t_f)}{[1+\dot{x}^{\star}(t_f)^2]^{1/2}}\right] [t_f - 5 - \dot{x}^{\star}(t_f)] + [1+\dot{x}^{\star}(t_f)^2]^{1/2} = 0$$
$$[\dot{x}^{\star}(t_f)] [t_f - 5 - \dot{x}^{\star}(t_f)] + [1+\dot{x}^{\star}(t_f)^2] = 0$$
$$c_1 [t_f - 5] + 1 = 0$$

• Now look at $x^{\star}(t)$ and $\Theta(t)$ at t_f

$$x^{\star}(t_f) = -\frac{t_f}{(t_f - 5)} = \frac{1}{2}([t_f - 5]^2 - 1)$$

which gives $t_f = 3$, $c_1 = 1/2$ and $x^{\star}(t_f) = t/2$

Figure 5.5: Quadratic terminal constraint.

Corner Conditions

- Key generalization of the preceding is to allow the possibility that the solutions not be as **smooth**
 - Assume that $\mathbf{x}(t)$ cts, but allow discontinuities in $\dot{\mathbf{x}}(t)$, which occur at corners.
 - Naturally occur when intermediate state constraints imposed, or with jumps in the control signal.
- Goal: with t_0 , t_f , $\mathbf{x}(t_0)$, and $\mathbf{x}(t_f)$ fixed, minimize cost functional

$$J(\mathbf{x}(t),t) = \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

- Assume g has cts first/second derivatives wrt all arguments

- Even so, $\dot{\mathbf{x}}$ discontinuity could lead to a discontinuity in g.

• Assume that $\dot{\mathbf{x}}$ has a discontinuity at some time $t_1 \in (t_0, t_f)$, which is not fixed (or typically known). Divide cost into 2 regions:

$$J(\mathbf{x}(t), t) = \int_{t_0}^{t_1} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt + \int_{t_1}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

• Expand as before – note that t_1 is not fixed

$$\delta J = \int_{t_0}^{t_1} \left[\frac{\partial g}{\partial \mathbf{x}} \delta \mathbf{x} + \frac{\partial g}{\partial \dot{\mathbf{x}}} \delta \dot{\mathbf{x}} \right] dt + g(t_1^-) \delta t_1 + \int_{t_1}^{t_f} \left[\frac{\partial g}{\partial \mathbf{x}} \delta \mathbf{x} + \frac{\partial g}{\partial \dot{\mathbf{x}}} \delta \dot{\mathbf{x}} \right] dt - g(t_1^+) \delta t_1$$

Now IBP

$$\begin{split} \delta J &= \int_{t_0}^{t_1} \left[g_{\mathbf{x}} - \frac{d}{dt} \left(g_{\dot{\mathbf{x}}} \right) \right] \delta \mathbf{x} dt + g(t_1^-) \delta t_1 + g_{\dot{\mathbf{x}}}(t_1^-) \delta \mathbf{x}(t_1^-) \\ &+ \int_{t_1}^{t_f} \left[g_{\mathbf{x}} - \frac{d}{dt} \left(g_{\dot{\mathbf{x}}} \right) \right] \delta \mathbf{x} dt - g(t_1^+) \delta t_1 - g_{\dot{\mathbf{x}}}(t_1^+) \delta \mathbf{x}(t_1^+) \end{split}$$

• As on 5–9, must constrain $\delta \mathbf{x}_1$, which is the total variation in the solution at time t_1

from lefthand side
$$\delta \mathbf{x}_1 = \delta \mathbf{x}(t_1^-) + \dot{\mathbf{x}}(t_1^-) \delta t_1$$

from righthand side $\delta \mathbf{x}_1 = \delta \mathbf{x}(t_1^+) + \dot{\mathbf{x}}(t_1^+) \delta t_1$

- Continuity requires that these two expressions for $\delta \mathbf{x}_1$ be equal
- Already know that it is possible that $\dot{\mathbf{x}}(t_1^-) \neq \dot{\mathbf{x}}(t_1^+)$, so possible that $\delta \mathbf{x}(t_1^-) \neq \delta \mathbf{x}(t_1^+)$ as well.
- Substitute:

$$\begin{split} \delta J &= \int_{t_0}^{t_1} \left[g_{\mathbf{x}} - \frac{d}{dt} \left(g_{\dot{\mathbf{x}}} \right) \right] \delta \mathbf{x} dt + \left[g(t_1^-) - g_{\dot{\mathbf{x}}}(t_1^-) \dot{\mathbf{x}}(t_1^-) \right] \delta t_1 + g_{\dot{\mathbf{x}}}(t_1^-) \delta \mathbf{x}_1 \\ &+ \int_{t_1}^{t_f} \left[g_{\mathbf{x}} - \frac{d}{dt} \left(g_{\dot{\mathbf{x}}} \right) \right] \delta \mathbf{x} dt - \left[g(t_1^+) - g_{\dot{\mathbf{x}}}(t_1^+) \dot{\mathbf{x}}(t_1^+) \right] \delta t_1 - g_{\dot{\mathbf{x}}}(t_1^+) \delta \mathbf{x}_1 \end{split}$$

Necessary conditions are then:

$$g_{\mathbf{x}} - \frac{d}{dt} (g_{\dot{\mathbf{x}}}) = 0 \quad t \in (t_0, t_f)$$
$$g_{\dot{\mathbf{x}}}(t_1^-) = g_{\dot{\mathbf{x}}}(t_1^+)$$
$$g(t_1^-) - g_{\dot{\mathbf{x}}}(t_1^-) \dot{\mathbf{x}}(t_1^-) = g(t_1^+) - g_{\dot{\mathbf{x}}}(t_1^+) \dot{\mathbf{x}}(t_1^+)$$

- Last two are the Weierstrass-Erdmann conditions

- Necessary conditions given for a special set of the terminal conditions, but the form of the internal conditions unchanged by different terminal constraints
 - With several corners, there are a set of constraints for each
 - $-\mbox{ Can}$ be used to demonstrate that there isn't a corner

- Typical instance that induces corners is intermediate time constraints of the form x(t₁) = θ(t₁).
 - i.e., the solution must touch a specified curve at some point in time during the solution.

• Slightly complicated in this case, because the constraint couples the allowable variations in δx_1 and δt since

$$\delta \mathbf{x}_1 = \frac{d\boldsymbol{\theta}}{dt} \delta t_1 = \dot{\boldsymbol{\theta}} \delta t_1$$

- But can eliminate $\delta \mathbf{x}_1$ in favor of δt_1 in the expression for δJ to get new corner condition:

$$g(t_1^-) + g_{\dot{\mathbf{x}}}(t_1^-) \left[\dot{\boldsymbol{\theta}}(t_1^-) - \dot{\mathbf{x}}(t_1^-) \right] = g(t_1^+) + g_{\dot{\mathbf{x}}}(t_1^+) \left[\dot{\boldsymbol{\theta}}(t_1^+) - \dot{\mathbf{x}}(t_1^+) \right]$$

– So now $g_{\dot{\mathbf{x}}}(t_1^-) = g_{\dot{\mathbf{x}}}(t_1^+)$ no longer needed, but have $\mathbf{x}(t_1) = {m heta}(t_1)$

Corner Example

- Find shortest length path joining the points x = 0, t = -2 and x = 0, t = 1 that touches the curve $x = t^2 + 3$ at some point
- In this case, $J = \int_{-2}^{1} \sqrt{1 + \dot{x}^2} dt$ with x(1) = x(-2) = 0and $x(t_1) = t_1^2 + 3$
- Note that since g is only a function of \dot{x} , then solution x(t) will only be linear in each segment (see 5–13)

segment 1 x(t) = a + btsegment 2 x(t) = c + dt

- Terminal conditions: x(-2) = a - 2b = 0 and x(1) = c + d = 0

• Apply corner condition:

$$\begin{split} \sqrt{1 + \dot{x}(t_1^-)^2} &+ \frac{\dot{x}(t_1^-)}{\sqrt{1 + \dot{x}(t_1^-)^2}} \left[2t_1^- - \dot{x}(t_1^-) \right] \\ &= \frac{1 + 2t_1^- \dot{x}(t_1^-)}{\sqrt{1 + \dot{x}(t_1^-)^2}} = \frac{1 + 2t_1^+ \dot{x}(t_1^+)}{\sqrt{1 + \dot{x}(t_1^+)^2}} \end{split}$$

which gives:

$$\frac{1+2bt_1}{\sqrt{1+b^2}} = \frac{1+2dt_1}{\sqrt{1+d^2}}$$

• Solve using fsolve to get:

```
a = 3.0947, b = 1.5474, c = 2.8362, d = -2.8362, t_1 = -0.0590
function F=myfunc(x); %
% x=[a b c d t1]; %
F=[x(1)-2*x(2);
x(3)+x(4);
(1+2*x(2)*x(5))/(1+x(2)^2)^{(1/2)} - (1+2*x(4)*x(5))/(1+x(4)^2)^{(1/2)};
x(1)+x(2)*x(5) - (x(5)^2+3);
x(3)+x(4)*x(5) - (x(5)^2+3)];
return %
x = fsolve('myfunc', [2 1 2 -2 0]')
```

Constrained Solutions

16.323 5-19

- Now consider variations of the basic problem that include constraints.
- For example, if the goal is to find the extremal function \mathbf{x}^{\star} that minimizes

$$J(\mathbf{x}(t), t) = \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

subject to the constraint that a given set of n differential equations be satisfied

$$\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) = 0$$

where we assume that $\mathbf{x} \in \mathcal{R}^{n+m}$ (take t_f and $\mathbf{x}(t_f)$ to be fixed)

- As with the basic optimization problems in Lecture 2, proceed by augmenting cost with the constraints using Lagrange multipliers
 - Since the constraints must be satisfied at all time, these multipliers are also assumed to be functions of time.

$$J_a(\mathbf{x}(t), t) = \int_{t_0}^{t_f} \left\{ g(\mathbf{x}, \dot{\mathbf{x}}, t) + \mathbf{p}(t)^T \mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t) \right\} dt$$

- Does not change the cost if the constraints are satisfied.
- Time varying Lagrange multipliers give more degrees of freedom in specifying how the constraints are added.
- Take variation of augmented functional considering perturbations to both $\mathbf{x}(t)$ and $\mathbf{p}(t)$

$$\begin{split} \delta J(\mathbf{x}(t), \delta \mathbf{x}(t), \mathbf{p}(t), \delta \mathbf{p}(t)) \\ = \int_{t_0}^{t_f} \left\{ \left[\ g_{\mathbf{x}} + \mathbf{p}^T \mathbf{f}_{\mathbf{x}} \right] \delta \mathbf{x}(t) + \left[g_{\dot{\mathbf{x}}} + \mathbf{p}^T \mathbf{f}_{\dot{\mathbf{x}}} \right] \delta \dot{\mathbf{x}}(t) + \mathbf{f}^T \delta \mathbf{p}(t) \right\} dt \end{split}$$

• As before, integrate by parts to get:

$$\begin{split} \delta J(\mathbf{x}(t), \delta \mathbf{x}(t), \mathbf{p}(t), \delta \mathbf{p}(t)) \\ = \int_{t_0}^{t_f} \left(\left\{ \left[g_{\mathbf{x}} + \mathbf{p}^T \mathbf{f}_{\mathbf{x}} \right] - \frac{d}{dt} \left[g_{\dot{\mathbf{x}}} + \mathbf{p}^T \mathbf{f}_{\dot{\mathbf{x}}} \right] \right\} \delta \mathbf{x}(t) + \mathbf{f}^T \delta \mathbf{p}(t) \right) dt \end{split}$$

• To simplify things a bit, define

$$g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \equiv g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) + \mathbf{p}(t)^T \mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)$$

• On the extremal, the variation must be zero, but since $\delta \mathbf{x}(t)$ and $\delta \mathbf{p}(t)$ can be arbitrary, can only occur if

$$\frac{\partial g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)}{\partial \mathbf{x}} - \frac{d}{dt} \left(\frac{\partial g_a(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)}{\partial \dot{\mathbf{x}}} \right) = 0$$
$$\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) = 0$$

 which are obviously a generalized version of the Euler equations obtained before.

- Note similarity of the definition of g_a here with the Hamiltonian on page 4–4.
- Will find that this generalization carries over to future optimizations as well.

General Terminal Conditions^{16.323 5–21}

 Now consider Type 3 constraints on 5–10, which are a very general form with t_f free and x(t_f) given by a condition:

$$\mathbf{m}(\mathbf{x}(t_f), t_f) = 0$$

• Constrained optimization, so as before, augment the cost functional

$$J(\mathbf{x}(t), t) = h(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

with the constraint using Lagrange multipliers:

$$J_a(\mathbf{x}(t), \boldsymbol{\nu}, t) = h(\mathbf{x}(t_f), t_f) + \boldsymbol{\nu}^T \mathbf{m}(\mathbf{x}(t_f), t_f) + \int_{t_0}^{t_f} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) dt$$

• Considering changes to $\mathbf{x}(t)$, t_f , $\mathbf{x}(t_f)$ and $\boldsymbol{\nu}$, the variation for J_a is

$$\delta J_a = h_{\mathbf{x}}(t_f) \delta \mathbf{x}_f + h_{t_f} \delta t_f + \mathbf{m}^T(t_f) \delta \boldsymbol{\nu} + \boldsymbol{\nu}^T \left(\mathbf{m}_{\mathbf{x}}(t_f) \delta \mathbf{x}_f + \mathbf{m}_{t_f}(t_f) \delta t_f \right)$$
$$+ \int_{t_0}^{t_f} \left[g_{\mathbf{x}} \delta \mathbf{x} + g_{\dot{\mathbf{x}}} \delta \dot{\mathbf{x}} \right] dt + g(t_f) \delta t_f$$
$$= \left[h_{\mathbf{x}}(t_f) + \boldsymbol{\nu}^T \mathbf{m}_{\mathbf{x}}(t_f) \right] \delta \mathbf{x}_f + \left[h_{t_f} + \boldsymbol{\nu}^T \mathbf{m}_{t_f}(t_f) + g(t_f) \right] \delta t_f$$

$$+\mathbf{m}^{T}(t_{f})\delta\boldsymbol{\nu} + \int_{t_{0}}^{t_{f}} \left[g_{\mathbf{x}} - \frac{d}{dt}g_{\dot{\mathbf{x}}}\right]\delta\mathbf{x}dt + g_{\dot{\mathbf{x}}}(t_{f})\delta\mathbf{x}(t_{f})$$

- Now use that $\delta \mathbf{x}_f = \delta \mathbf{x}(t_f) + \dot{\mathbf{x}}(t_f) \delta t_f$ as before to get

$$\delta J_a = \begin{bmatrix} h_{\mathbf{x}}(t_f) + \boldsymbol{\nu}^T \mathbf{m}_{\mathbf{x}}(t_f) + g_{\dot{\mathbf{x}}}(t_f) \end{bmatrix} \delta \mathbf{x}_f + \begin{bmatrix} h_{t_f} + \boldsymbol{\nu}^T \mathbf{m}_{t_f}(t_f) + g(t_f) - g_{\dot{\mathbf{x}}}(t_f) \dot{\mathbf{x}}(t_f) \end{bmatrix} \delta t_f + \mathbf{m}^T(t_f) \delta \boldsymbol{\nu} + \int_{t_0}^{t_f} \begin{bmatrix} g_{\mathbf{x}} - \frac{d}{dt} g_{\dot{\mathbf{x}}} \end{bmatrix} \delta \mathbf{x} dt$$

June 18, 2008

Looks like a bit of a mess, but we can clean it up a bit using

$$w(\mathbf{x}(t_f), \boldsymbol{\nu}, t_f) = h(\mathbf{x}(t_f), t_f) + \boldsymbol{\nu}^T \mathbf{m}(\mathbf{x}(t_f), t_f)$$

to get

$$\begin{split} \delta J_a &= \left[w_{\mathbf{x}}(t_f) + g_{\dot{\mathbf{x}}}(t_f) \right] \delta \mathbf{x}_f \\ &+ \left[w_{t_f} + g(t_f) - g_{\dot{\mathbf{x}}}(t_f) \dot{\mathbf{x}}(t_f) \right] \delta t_f + \mathbf{m}^T(t_f) \delta \boldsymbol{\nu} \\ &+ \int_{t_0}^{t_f} \left[g_{\mathbf{x}} - \frac{d}{dt} g_{\dot{\mathbf{x}}} \right] \delta \mathbf{x} dt \end{split}$$

- Given the extra degrees of freedom in the multipliers, can treat all of the variations as independent \Rightarrow all coefficients must be zero to achieve $\delta J_a = 0$

• So the necessary conditions are

$$\begin{split} g_{\mathbf{x}} - \frac{d}{dt}g_{\dot{\mathbf{x}}} &= 0 \quad (\texttt{dim}\;n) \\ w_{\mathbf{x}}(t_f) + g_{\dot{\mathbf{x}}}(t_f) &= 0 \quad (\texttt{dim}\;n) \\ w_{t_f} + g(t_f) - g_{\dot{\mathbf{x}}}(t_f) \dot{\mathbf{x}}(t_f) &= 0 \quad (\texttt{dim}\;1) \end{split}$$

- With $\mathbf{x}(t_0) = \mathbf{x}_0 \pmod{n}$ and $\mathbf{m}(\mathbf{x}(t_f), t_f) = 0 \pmod{m}$ combined with last 2 conditions $\Rightarrow 2n + m + 1$ constraints

- Solution of Eulers equation has 2n constants of integration for x(t), and must find ν (dim m) and $t_f \Rightarrow 2n + m + 1$ unknowns
- Some special cases:
 - If t_f is fixed, $h = h(\mathbf{x}(t_f))$, $\mathbf{m} \to \mathbf{m}(\mathbf{x}(t_f))$ and we lose the last condition in box others remain unchanged
 - If t_f is fixed, $\mathbf{x}(t_f)$ free, then there is no \mathbf{m} , no $\boldsymbol{\nu}$ and w reduces to h.
- Kirk's book also considers several other type of constraints.