MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.323 Lecture 5

Calculus of Variations

- Calculus of Variations
- Most books cover this material well, but Kirk Chapter 4 does a particularly nice job.
- See here for online reference.

Figure by MIT OpenCourseWare.

- Goal: Develop alternative approach to solve general optimization problems for continuous systems - variational calculus
- Formal approach will provide new insights for constrained solutions, and a more direct path to the solution for other problems.
- Main issue - General control problem, the cost is a function of functions $\mathbf{x}(t)$ and $\mathbf{u}(t)$.

$$
\left.\min J=h\left(\mathbf{x}\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \mathbf{u}(t), t)\right) d t
$$

subject to

$$
\begin{aligned}
& \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, t) \\
& \mathbf{x}\left(t_{0}\right), t_{0} \text { given } \\
& m\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=0
\end{aligned}
$$

- Call $J(\mathbf{x}(t), \mathbf{u}(t))$ a functional.
- Need to investigate how to find the optimal values of a functional.
- For a function, we found the gradient, and set it to zero to find the stationary points, and then investigated the higher order derivatives to determine if it is a maximum or minimum.
- Will investigate something similar for functionals.

- Maximum and Minimum of a Function

- A function $f(\mathbf{x})$ has a local minimum at \mathbf{x}^{\star} if

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{\star}\right)
$$

for all admissible \mathbf{x} in $\left\|\mathrm{x}-\mathrm{x}^{\star}\right\| \leq \epsilon$

- Minimum can occur at (i) stationary point, (ii) at a boundary, or (iii) a point of discontinuous derivative.
- If only consider stationary points of the differentiable function $f(\mathbf{x})$, then statement equivalent to requiring that differential of f satisfy:

$$
d f=\frac{\partial f}{\partial \mathbf{x}} d \mathbf{x}=0
$$

for all small $d \mathbf{x}$, which gives the same necessary condition from Lecture 1

$$
\frac{\partial f}{\partial \mathbf{x}}=0
$$

- Note that this definition used norms to compare two vectors. Can do the same thing with functions \Rightarrow distance between two functions

$$
d=\left\|\mathbf{x}_{2}(t)-\mathbf{x}_{1}(t)\right\|
$$

where

1. $\|\mathbf{x}(t)\| \geq 0$ for all $\mathbf{x}(t)$, and $\|\mathbf{x}(t)\|=0$ only if $\mathbf{x}(t)=0$ for all t in the interval of definition.
2. $\|a \mathbf{x}(t)\|=|a|\|\mathbf{x}(t)\|$ for all real scalars a.
3. $\left\|\mathbf{x}_{1}(t)+\mathbf{x}_{2}(t)\right\| \leq\left\|\mathbf{x}_{1}(t)\right\|+\left\|\mathbf{x}_{2}(t)\right\|$

- Common function norm:

$$
\|\mathbf{x}(t)\|_{2}=\left(\int_{t_{0}}^{t_{f}} \mathbf{x}(t)^{T} \mathbf{x}(t) d t\right)^{1 / 2}
$$

- Maximum and Minimum of a Functional
- A functional $J(\mathbf{x}(t))$ has a local minimum at $\mathbf{x}^{\star}(t)$ if

$$
J(\mathbf{x}(t)) \geq J\left(\mathbf{x}^{\star}(t)\right)
$$

for all admissible $\mathbf{x}(t)$ in $\left\|\mathbf{x}(t)-\mathbf{x}^{\star}(t)\right\| \leq \epsilon$

- Now define something equivalent to the differential of a function called a variation of a functional.
- An increment of a functional

$$
\Delta J(\mathbf{x}(t), \delta \mathbf{x}(t))=J(\mathbf{x}(t)+\delta \mathbf{x}(t))-J(\mathbf{x}(t))
$$

- A variation of the functional is a linear approximation of this increment:

$$
\Delta J(\mathbf{x}(t), \delta \mathbf{x}(t))=\delta J(\mathbf{x}(t), \delta \mathbf{x}(t))+\text { H.O.T }
$$

i.e. $\delta J(\mathbf{x}(t), \delta \mathbf{x}(t))$ is linear in $\delta \mathbf{x}(t)$.

Figure by MIT OpenCourseWare.

Figure 5.1: Differential $d f$ versus increment Δf shown for a function, but the same difference holds for a functional.

Figure by MIT OpenCourseWare.
Figure 5.2: Visualization of perturbations to function $x(t)$ by $\delta x(t)$ - it is a potential change in the value of x over the entire time period of interest. Typically require that if $x(t)$ is in some class (i.e., continuous), that $x(t)+\delta x(t)$ is also in that class.

- Fundamental Theorem of the Calculus of Variations

- Let \mathbf{x} be a function of t in the class Ω, and $J(\mathbf{x})$ be a differentiable functional of \mathbf{x}. Assume that the functions in Ω are not constrained by any boundaries.
- If \mathbf{x}^{\star} is an extremal function, then the variation of J must vanish on \mathbf{x}^{\star}, i.e. for all admissible $\delta \mathbf{x}$,

$$
\delta J(\mathbf{x}(t), \delta \mathbf{x}(t))=0
$$

- Proof is in Kirk, page 121, but it is relatively straightforward.
- How compute the variation? If $J(\mathbf{x}(t))=\int_{t_{0}}^{t_{f}} f(\mathbf{x}(t)) d t$ where f has cts first and second derivatives with respect to \mathbf{x}, then

$$
\begin{aligned}
\delta J(\mathbf{x}(t), \delta \mathbf{x}) & =\int_{t_{0}}^{t_{f}}\left\{\frac{\partial f(\mathbf{x}(t))}{\partial \mathbf{x}(t)}\right\} \delta \mathbf{x} d t+f\left(\mathbf{x}\left(t_{f}\right)\right) \delta t_{f}-f\left(\mathbf{x}\left(t_{0}\right)\right) \delta t_{0} \\
& =\int_{t_{0}}^{t_{f}} f_{\mathbf{x}}(\mathbf{x}(t)) \delta \mathbf{x} d t+f\left(\mathbf{x}\left(t_{f}\right)\right) \delta t_{f}-f\left(\mathbf{x}\left(t_{0}\right)\right) \delta t_{0}
\end{aligned}
$$

- For more general problems, first consider the cost evaluated on a scalar function $x(t)$ with t_{0}, t_{f} and the curve endpoints fixed.

$$
\begin{gathered}
J(x(t))=\int_{t_{0}}^{t_{f}} g(x(t), \dot{x}(t), t) d t \\
\Rightarrow \quad \delta J(x(t), \delta x)=\int_{t_{0}}^{t_{f}}\left[g_{x}(x(t), \dot{x}(t), t) \delta x+g_{\dot{x}}(x(t), \dot{x}(t), t) \delta \dot{x}\right] d t
\end{gathered}
$$

- Note that

$$
\delta \dot{x}=\frac{d}{d t} \delta x
$$

so δx and $\delta \dot{x}$ are not independent.

- Integrate by parts:

$$
\int u d v \equiv u v-\int v d u
$$

with $u=g_{\dot{x}}$ and $d v=\delta \dot{x} d t$ to get:

$$
\begin{aligned}
\delta J(x(t), \delta x)= & \int_{t_{0}}^{t_{f}} g_{x}(x(t), \dot{x}(t), t) \delta x d t+\left[g_{\dot{x}}(x(t), \dot{x}(t), t) \delta x\right]_{t_{0}}^{t_{f}} \\
& -\int_{t_{0}}^{t_{f}} \frac{d}{d t} g_{\dot{x}}(x(t), \dot{x}(t), t) \delta x d t \\
= & \int_{t_{0}}^{t_{f}}\left[g_{x}(x(t), \dot{x}(t), t)-\frac{d}{d t} g_{\dot{x}}(x(t), \dot{x}(t), t)\right] \delta x(t) d t \\
& +\left[g_{\dot{x}}(x(t), \dot{x}(t), t) \delta x\right]_{t_{0}}^{t_{f}}
\end{aligned}
$$

- Since $x\left(t_{0}\right), x\left(t_{f}\right)$ given, then $\delta x\left(t_{0}\right)=\delta x\left(t_{f}\right)=0$, yielding

$$
\delta J(x(t), \delta x)=\int_{t_{0}}^{t_{f}}\left[g_{x}(x(t), \dot{x}(t), t)-\frac{d}{d t} g_{\dot{x}}(x(t), \dot{x}(t), t)\right] \delta x(t) d t
$$

- Recall need $\delta J=0$ for all admissible $\delta x(t)$, which are arbitrary within $\left(t_{0}, t_{f}\right) \Rightarrow$ the (first order) necessary condition for a maximum or minimum is called Euler Equation:

$$
\frac{\partial g(x(t), \dot{x}(t), t)}{\partial x}-\frac{d}{d t}\left(\frac{\partial g(x(t), \dot{x}(t), t)}{\partial \dot{x}}\right)=0
$$

- Example: Find the curve that gives the shortest distance between 2 points in a plane $\left(x_{0}, y_{0}\right)$ and $\left(x_{f}, y_{f}\right)$.
- Cost function - sum of differential arc lengths:

$$
\begin{aligned}
J & =\int_{x_{0}}^{x_{f}} d s=\int_{x_{0}}^{x_{f}} \sqrt{(d x)^{2}+(d y)^{2}} \\
& =\int_{x_{0}}^{x_{f}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

- Take y as dependent variable, and x as independent one

$$
\frac{d y}{d x} \rightarrow \dot{y}
$$

- New form of the cost:

$$
J=\int_{x_{0}}^{x_{f}} \sqrt{1+\dot{y}^{2}} d x \rightarrow \int_{x_{0}}^{x_{f}} g(\dot{y}) d x
$$

- Take partials: $\partial g / \partial y=0$, and

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\partial g}{\partial \dot{y}}\right) & =\frac{d}{d \dot{y}}\left(\frac{\partial g}{\partial \dot{y}}\right) \frac{d \dot{y}}{d x} \\
& =\frac{d}{d \dot{y}}\left(\frac{\dot{y}}{\left(1+\dot{y}^{2}\right)^{1 / 2}}\right) \ddot{y}=\frac{\ddot{y}}{\left(1+\dot{y}^{2}\right)^{3 / 2}}=0
\end{aligned}
$$

which implies that $\ddot{y}=0$

- Most general curve with $\ddot{y}=0$ is a line $y=c_{1} x+c_{2}$
- Can generalize the problem by including several (N) functions $x_{i}(t)$ and possibly free endpoints

$$
J(\mathbf{x}(t))=\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

with $t_{0}, t_{f}, \mathbf{x}\left(t_{0}\right)$ fixed.

- Then (drop the arguments for brevity)

$$
\delta J(\mathbf{x}(t), \delta \mathbf{x})=\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}} \delta \mathbf{x}(t)+g_{\dot{\mathbf{x}}} \delta \dot{\mathbf{x}}(t)\right] d t
$$

- Integrate by parts to get:
$\delta J(\mathbf{x}(t), \delta \mathbf{x})=\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}\right] \delta \mathbf{x}(t) d t+g_{\dot{\mathbf{x}}}\left(\mathbf{x}\left(t_{f}\right), \dot{\mathbf{x}}\left(t_{f}\right), t_{f}\right) \delta \mathbf{x}\left(t_{f}\right)$
- The requirement then is that for $t \in\left(t_{0}, t_{f}\right), \mathbf{x}(t)$ must satisfy

$$
\frac{\partial g}{\partial \mathbf{x}}-\frac{d}{d t} \frac{\partial g}{\partial \dot{\mathbf{x}}}=0
$$

where $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ which are the given N boundary conditions, and the remaining N more BC follow from:
$-\mathbf{x}\left(t_{f}\right)=\mathbf{x}_{f}$ if \mathbf{x}_{f} is given as fixed,

- If $\mathbf{x}\left(t_{f}\right)$ are free, then

$$
\frac{\partial g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)}{\partial \dot{\mathbf{x}}\left(t_{f}\right)}=0
$$

- Note that we could also have a mixture, where parts of $\mathbf{x}\left(t_{f}\right)$ are given as fixed, and other parts are free - just use the rules above on each component of $x_{i}\left(t_{f}\right)$
- Now consider a slight variation: the goal is to minimize

$$
J(\mathbf{x}(t))=\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

with $t_{0}, \mathbf{x}\left(t_{0}\right)$ fixed, t_{f} free, and various constraints on $\mathbf{x}\left(t_{f}\right)$

- Compute variation of the functional considering 2 candidate solutions:
$-\mathbf{x}(t)$, which we consider to be a perturbation of the optimal $\mathbf{x}^{\star}(t)$ (that we need to find)
$\delta J\left(\mathbf{x}^{\star}(t), \delta \mathbf{x}\right)=\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}} \delta \mathbf{x}(t)+g_{\dot{\mathbf{x}}} \delta \dot{\mathbf{x}}(t)\right] d t+g\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \delta t_{f}$
- Integrate by parts to get:

$$
\begin{aligned}
\delta J\left(\mathbf{x}^{\star}(t), \delta \mathbf{x}\right) & =\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}\right] \delta \mathbf{x}(t) d t \\
& +g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \delta \mathbf{x}\left(t_{f}\right) \\
& +g\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \delta t_{f}
\end{aligned}
$$

- Looks standard so far, but we have to be careful how we handle the terminal conditions

Figure by MIT OpenCourseWare.
Figure 5.3: Comparison of possible changes to function at end time when t_{f} is free.

- By definition, $\delta \mathbf{x}\left(t_{f}\right)$ is the difference between two admissible functions at time t_{f} (in this case the optimal solution \mathbf{x}^{\star} and another candidate \mathbf{x}).
- But in this case, must also account for possible changes to δt_{f}.
- Define $\delta \mathbf{x}_{f}$ as being the difference between the ends of the two possible functions - total possible change in the final state:

$$
\delta \mathbf{x}_{f} \approx \delta \mathbf{x}\left(t_{f}\right)+\dot{\mathbf{x}}^{\star}\left(t_{f}\right) \delta t_{f}
$$

so $\delta \mathbf{x}\left(t_{f}\right) \neq \delta \mathbf{x}_{f}$ in general.

- Substitute to get

$$
\begin{aligned}
\delta J\left(\mathbf{x}^{\star}(t), \delta \mathbf{x}\right) & =\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}\right] \delta \mathbf{x}(t) d t+g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \delta \mathbf{x}_{f} \\
& +\left[g\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right)-g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \dot{\mathbf{x}}^{\star}\left(t_{f}\right)\right] \delta t_{f}
\end{aligned}
$$

- Independent of the terminal constraint, the conditions on the solution $\mathbf{x}^{\star}(t)$ to be an extremal for this case are that it satisfy the Euler equations

$$
g_{\mathbf{x}}\left(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t\right)-\frac{d}{d t} g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t\right)=0
$$

- Now consider the additional constraints on the individual elements of $\mathbf{x}^{\star}\left(t_{f}\right)$ and t_{f} to find the other boundary conditions
- Type of terminal constraints determines how we treat $\delta \mathbf{x}_{f}$ and δt_{f}

1. Unrelated
2. Related by a simple function $\mathbf{x}\left(t_{f}\right)=\Theta\left(t_{f}\right)$
3. Specified by a more complex constraint $\mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=0$

- Type 1: If t_{f} and $\mathbf{x}\left(t_{f}\right)$ are free but unrelated, then $\delta \mathbf{x}_{f}$ and δt_{f} are independent and arbitrary \Rightarrow their coefficients must both be zero.

$$
\begin{aligned}
g_{\mathbf{x}}\left(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t\right)-\frac{d}{d t} g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t\right) & =0 \\
g\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right)-g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \dot{\mathbf{x}}^{\star}\left(t_{f}\right) & =0 \\
g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) & =0
\end{aligned}
$$

- Which makes it clear that this is a two-point boundary value problem, as we now have conditions at both t_{0} and t_{f}
- Type 2: If t_{f} and $\mathbf{x}\left(t_{f}\right)$ are free but related as $\mathbf{x}\left(t_{f}\right)=\Theta\left(t_{f}\right)$, then

$$
\delta \mathbf{x}_{f}=\frac{d \Theta}{d t}\left(t_{f}\right) \delta t_{f}
$$

- Substitute and collect terms gives

$$
\begin{aligned}
\delta J & =\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}\right] \delta \mathbf{x} d t+\left[g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \frac{d \Theta}{d t}\left(t_{f}\right)\right. \\
& \left.+g\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right)-g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) \dot{\mathbf{x}}^{\star}\left(t_{f}\right)\right] \delta t_{f}
\end{aligned}
$$

- Set coefficient of δt_{f} to zero (it is arbitrary) \Rightarrow full conditions

$$
\begin{aligned}
g_{\mathbf{x}}\left(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t\right)-\frac{d}{d t} g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}(t), \dot{\mathbf{x}}^{\star}(t), t\right) & =0 \\
g_{\dot{\mathbf{x}}}\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right)\left[\frac{d \Theta}{d t}\left(t_{f}\right)-\dot{\mathbf{x}}^{\star}\left(t_{f}\right)\right]+g\left(\mathbf{x}^{\star}\left(t_{f}\right), \dot{\mathbf{x}}^{\star}\left(t_{f}\right), t_{f}\right) & =0
\end{aligned}
$$

- Last equation called the Transversality Condition
- To handle third type of terminal condition, must address solution of constrained problems.

Figure 5.4: Summary of possible terminal constraints (Kirk, page 151)

- Find the shortest curve from the origin to a specified line.
- Goal: minimize the cost functional (See page 5-6)

$$
J=\int_{t_{0}}^{t_{f}} \sqrt{1+\dot{x}^{2}(t)} d t
$$

given that $t_{0}=0, x(0)=0$, and t_{f} and $x\left(t_{f}\right)$ are free, but $x\left(t_{f}\right)$ must line on the line

$$
\theta(t)=-5 t+15
$$

- Since $g(x, \dot{x}, t)$ is only a function of \dot{x}, Euler equation reduces to

$$
\frac{d}{d t}\left[\frac{\dot{x}^{\star}(t)}{\left[1+\dot{x}^{\star}(t)^{2}\right]^{1 / 2}}\right]=0
$$

which after differentiating and simplifying, gives $\ddot{x}^{\star}(t)=0 \Rightarrow$ answer is a straight line

$$
x^{\star}(t)=c_{1} t+c_{0}
$$

but since $x(0)=0$, then $c_{0}=0$

- Transversality condition gives

$$
\left[\frac{\dot{x}^{\star}\left(t_{f}\right)}{\left[1+\dot{x}^{\star}\left(t_{f}\right)^{2}\right]^{1 / 2}}\right]\left[-5-\dot{x}^{\star}\left(t_{f}\right)\right]+\left[1+\dot{x}^{\star}\left(t_{f}\right)^{2}\right]^{1 / 2}=0
$$

that simplifies to

$$
\left[\dot{x}^{\star}\left(t_{f}\right)\right]\left[-5-\dot{x}^{\star}\left(t_{f}\right)\right]+\left[1+\dot{x}^{\star}\left(t_{f}\right)^{2}\right]=-5 \dot{x}^{\star}\left(t_{f}\right)+1=0
$$

so that $\dot{x}^{\star}\left(t_{f}\right)=c_{1}=1 / 5$

- Not a surprise, as this gives the slope of a line orthogonal to the constraint line.
- To find final time: $x\left(t_{f}\right)=-5 t_{f}+15=t_{f} / 5$ which gives $t_{f} \approx 2.88$
- Had the terminal constraint been a bit more challenging, such as

$$
\Theta(t)=\frac{1}{2}\left([t-5]^{2}-1\right) \Rightarrow \frac{d \Theta}{d t}=t-5
$$

- Then the transversality condition gives

$$
\begin{aligned}
{\left[\frac{\dot{x}^{\star}\left(t_{f}\right)}{\left[1+\dot{x}^{\star}\left(t_{f}\right)^{2}\right]^{1 / 2}}\right]\left[t_{f}-5-\dot{x}^{\star}\left(t_{f}\right)\right]+\left[1+\dot{x}^{\star}\left(t_{f}\right)^{2}\right]^{1 / 2} } & =0 \\
{\left[\dot{x}^{\star}\left(t_{f}\right)\right]\left[t_{f}-5-\dot{x}^{\star}\left(t_{f}\right)\right]+\left[1+\dot{x}^{\star}\left(t_{f}\right)^{2}\right] } & =0 \\
c_{1}\left[t_{f}-5\right]+1 & =0
\end{aligned}
$$

- Now look at $x^{\star}(t)$ and $\Theta(t)$ at t_{f}

$$
x^{\star}\left(t_{f}\right)=-\frac{t_{f}}{\left(t_{f}-5\right)}=\frac{1}{2}\left(\left[t_{f}-5\right]^{2}-1\right)
$$

which gives $t_{f}=3, c_{1}=1 / 2$ and $x^{\star}\left(t_{f}\right)=t / 2$

Figure 5.5: Quadratic terminal constraint.

Corner Conditions

- Key generalization of the preceding is to allow the possibility that the solutions not be as smooth
- Assume that $\mathbf{x}(t)$ cts, but allow discontinuities in $\dot{\mathbf{x}}(t)$, which occur at corners.
- Naturally occur when intermediate state constraints imposed, or with jumps in the control signal.
- Goal: with $t_{0}, t_{f}, \mathbf{x}\left(t_{0}\right)$, and $\mathbf{x}\left(t_{f}\right)$ fixed, minimize cost functional

$$
J(\mathbf{x}(t), t)=\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

- Assume g has cts first/second derivatives wrt all arguments
- Even so, $\dot{\mathbf{x}}$ discontinuity could lead to a discontinuity in g.
- Assume that $\dot{\mathbf{x}}$ has a discontinuity at some time $t_{1} \in\left(t_{0}, t_{f}\right)$, which is not fixed (or typically known). Divide cost into 2 regions:

$$
J(\mathbf{x}(t), t)=\int_{t_{0}}^{t_{1}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t+\int_{t_{1}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

- Expand as before - note that t_{1} is not fixed

$$
\begin{aligned}
\delta J= & \int_{t_{0}}^{t_{1}}\left[\frac{\partial g}{\partial \mathbf{x}} \delta \mathbf{x}+\frac{\partial g}{\partial \dot{\mathbf{x}}} \delta \dot{\mathbf{x}}\right] d t+g\left(t_{1}^{-}\right) \delta t_{1} \\
& +\int_{t_{1}}^{t_{f}}\left[\frac{\partial g}{\partial \mathbf{x}} \delta \mathbf{x}+\frac{\partial g}{\partial \dot{\mathbf{x}}} \delta \dot{\mathbf{x}}\right] d t-g\left(t_{1}^{+}\right) \delta t_{1}
\end{aligned}
$$

- Now IBP

$$
\begin{aligned}
\delta J= & \int_{t_{0}}^{t_{1}}\left[g_{\mathbf{x}}-\frac{d}{d t}\left(g_{\dot{\mathbf{x}}}\right)\right] \delta \mathbf{x} d t+g\left(t_{1}^{-}\right) \delta t_{1}+g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right) \delta \mathbf{x}\left(t_{1}^{-}\right) \\
& +\int_{t_{1}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t}\left(g_{\dot{\mathbf{x}}}\right)\right] \delta \mathbf{x} d t-g\left(t_{1}^{+}\right) \delta t_{1}-g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right) \delta \mathbf{x}\left(t_{1}^{+}\right)
\end{aligned}
$$

- As on 5-9, must constrain $\delta \mathbf{x}_{1}$, which is the total variation in the solution at time t_{1}

$$
\begin{aligned}
\text { from lefthand side } & \delta \mathbf{x}_{1}=\delta \mathbf{x}\left(t_{1}^{-}\right)+\dot{\mathbf{x}}\left(t_{1}^{-}\right) \delta t_{1} \\
\text { from righthand side } & \delta \mathbf{x}_{1}=\delta \mathbf{x}\left(t_{1}^{+}\right)+\dot{\mathbf{x}}\left(t_{1}^{+}\right) \delta t_{1}
\end{aligned}
$$

- Continuity requires that these two expressions for $\delta \mathbf{x}_{1}$ be equal
- Already know that it is possible that $\dot{\mathbf{x}}\left(t_{1}^{-}\right) \neq \dot{\mathbf{x}}\left(t_{1}^{+}\right)$, so possible that $\delta \mathbf{x}\left(t_{1}^{-}\right) \neq \delta \mathbf{x}\left(t_{1}^{+}\right)$as well.
- Substitute:

$$
\begin{aligned}
\delta J & =\int_{t_{0}}^{t_{1}}\left[g_{\mathbf{x}}-\frac{d}{d t}\left(g_{\dot{\mathbf{x}}}\right)\right] \delta \mathbf{x} d t+\left[g\left(t_{1}^{-}\right)-g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right) \dot{\mathbf{x}}\left(t_{1}^{-}\right)\right] \delta t_{1}+g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right) \delta \mathbf{x}_{1} \\
& +\int_{t_{1}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t}\left(g_{\dot{\mathbf{x}}}\right)\right] \delta \mathbf{x} d t-\left[g\left(t_{1}^{+}\right)-g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right) \dot{\mathbf{x}}\left(t_{1}^{+}\right)\right] \delta t_{1}-g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right) \delta \mathbf{x}_{1}
\end{aligned}
$$

- Necessary conditions are then:

$$
\begin{aligned}
g_{\mathbf{x}}-\frac{d}{d t}\left(g_{\dot{\mathbf{x}}}\right) & =0 \quad t \in\left(t_{0}, t_{f}\right) \\
g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right) & =g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right) \\
g\left(t_{1}^{-}\right)-g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right) \dot{\mathbf{x}}\left(t_{1}^{-}\right) & =g\left(t_{1}^{+}\right)-g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right) \dot{\mathbf{x}}\left(t_{1}^{+}\right)
\end{aligned}
$$

- Last two are the Weierstrass-Erdmann conditions
- Necessary conditions given for a special set of the terminal conditions, but the form of the internal conditions unchanged by different terminal constraints
- With several corners, there are a set of constraints for each
- Can be used to demonstrate that there isn't a corner
- Typical instance that induces corners is intermediate time constraints of the form $\mathbf{x}\left(t_{1}\right)=\boldsymbol{\theta}\left(t_{1}\right)$.
- i.e., the solution must touch a specified curve at some point in time during the solution.
- Slightly complicated in this case, because the constraint couples the allowable variations in $\delta \mathbf{x}_{1}$ and δt since

$$
\delta \mathbf{x}_{1}=\frac{d \boldsymbol{\theta}}{d t} \delta t_{1}=\dot{\boldsymbol{\theta}} \delta t_{1}
$$

- But can eliminate $\delta \mathbf{x}_{1}$ in favor of δt_{1} in the expression for δJ to get new corner condition:

$$
g\left(t_{1}^{-}\right)+g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right)\left[\dot{\boldsymbol{\theta}}\left(t_{1}^{-}\right)-\dot{\mathbf{x}}\left(t_{1}^{-}\right)\right]=g\left(t_{1}^{+}\right)+g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right)\left[\dot{\boldsymbol{\theta}}\left(t_{1}^{+}\right)-\dot{\mathbf{x}}\left(t_{1}^{+}\right)\right]
$$

- So now $g_{\dot{\mathbf{x}}}\left(t_{1}^{-}\right)=g_{\dot{\mathbf{x}}}\left(t_{1}^{+}\right)$no longer needed, but have $\mathbf{x}\left(t_{1}\right)=\boldsymbol{\theta}\left(t_{1}\right)$
16.323 5-18
- Find shortest length path joining the points $x=0, t=-2$ and $x=0, t=1$ that touches the curve $x=t^{2}+3$ at some point
- In this case, $J=\int_{-2}^{1} \sqrt{1+\dot{x}^{2}} d t$ with $x(1)=x(-2)=0$ and $x\left(t_{1}\right)=t_{1}^{2}+3$
- Note that since g is only a function of \dot{x}, then solution $x(t)$ will only be linear in each segment (see 5-13)

$$
\begin{array}{ll}
\text { segment } 1 & x(t)=a+b t \\
\text { segment } 2 & x(t)=c+d t
\end{array}
$$

- Terminal conditions: $x(-2)=a-2 b=0$ and $x(1)=c+d=0$
- Apply corner condition:

$$
\begin{aligned}
\sqrt{1+\dot{x}\left(t_{1}^{-}\right)^{2}}+ & \frac{\dot{x}\left(t_{1}^{-}\right)}{\sqrt{1+\dot{x}\left(t_{1}^{-}\right)^{2}}}\left[2 t_{1}^{-}-\dot{x}\left(t_{1}^{-}\right)\right] \\
& =\frac{1+2 t_{1}^{-} \dot{x}\left(t_{1}^{-}\right)}{\sqrt{1+\dot{x}\left(t_{1}^{-}\right)^{2}}}=\frac{1+2 t_{1}^{+} \dot{x}\left(t_{1}^{+}\right)}{\sqrt{1+\dot{x}\left(t_{1}^{+}\right)^{2}}}
\end{aligned}
$$

which gives:

$$
\frac{1+2 b t_{1}}{\sqrt{1+b^{2}}}=\frac{1+2 d t_{1}}{\sqrt{1+d^{2}}}
$$

- Solve using fsolve to get:

$$
a=3.0947, b=1.5474, c=2.8362, d=-2.8362, t_{1}=-0.0590
$$

function $F=m y f u n c(x) ; \%$
$\% \mathrm{x}=[\mathrm{a} b \mathrm{c} \mathrm{d} \mathrm{t} 1] ; \%$
$\mathrm{F}=[\mathrm{x}(1)-2 * \mathrm{x}(2)$;
$x(3)+x(4)$;
$(1+2 * x(2) * x(5)) /\left(1+x(2)^{\wedge} 2\right)^{\wedge}(1 / 2)-(1+2 * x(4) * x(5)) /\left(1+x(4)^{\wedge} 2\right)^{\wedge}(1 / 2)$;
$\mathrm{x}(1)+\mathrm{x}(2) * \mathrm{x}(5)-\left(\mathrm{x}(5)^{\wedge} 2+3\right)$;
$\left.\mathrm{x}(3)+\mathrm{x}(4) * \mathrm{x}(5)-\left(\mathrm{x}(5)^{\wedge} 2+3\right)\right]$;
return \%
$\mathrm{x}=\mathrm{fsolve}\left({ }^{\prime} m y f u n c\right.$ ', $\left[\begin{array}{lllll}2 & 1 & 2 & -2 & 0\end{array}\right]$ ')

Constrained Solutions

- Now consider variations of the basic problem that include constraints.
- For example, if the goal is to find the extremal function \mathbf{x}^{\star} that minimizes

$$
J(\mathbf{x}(t), t)=\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

subject to the constraint that a given set of n differential equations be satisfied

$$
\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)=0
$$

where we assume that $\mathbf{x} \in \mathcal{R}^{n+m}$ (take t_{f} and $\mathbf{x}\left(t_{f}\right)$ to be fixed)

- As with the basic optimization problems in Lecture 2, proceed by augmenting cost with the constraints using Lagrange multipliers
- Since the constraints must be satisfied at all time, these multipliers are also assumed to be functions of time.

$$
J_{a}(\mathbf{x}(t), t)=\int_{t_{0}}^{t_{f}}\left\{g(\mathbf{x}, \dot{\mathbf{x}}, t)+\mathbf{p}(t)^{T} \mathbf{f}(\mathbf{x}, \dot{\mathbf{x}}, t)\right\} d t
$$

- Does not change the cost if the constraints are satisfied.
- Time varying Lagrange multipliers give more degrees of freedom in specifying how the constraints are added.
- Take variation of augmented functional considering perturbations to both $\mathbf{x}(t)$ and $\mathbf{p}(t)$

$$
\begin{aligned}
& \delta J(\mathbf{x}(t), \delta \mathbf{x}(t), \mathbf{p}(t), \delta \mathbf{p}(t)) \\
& =\int_{t_{0}}^{t_{f}}\left\{\left[g_{\mathbf{x}}+\mathbf{p}^{T} \mathbf{f}_{\mathbf{x}}\right] \delta \mathbf{x}(t)+\left[g_{\dot{\mathbf{x}}}+\mathbf{p}^{T} \mathbf{f}_{\dot{\mathbf{x}}}\right] \delta \dot{\mathbf{x}}(t)+\mathbf{f}^{T} \delta \mathbf{p}(t)\right\} d t
\end{aligned}
$$

- As before, integrate by parts to get:

$$
\begin{aligned}
& \delta J(\mathbf{x}(t), \delta \mathbf{x}(t), \mathbf{p}(t), \delta \mathbf{p}(t)) \\
& =\int_{t_{0}}^{t_{f}}\left(\left\{\left[g_{\mathbf{x}}+\mathbf{p}^{T} \mathbf{f}_{\mathbf{x}}\right]-\frac{d}{d t}\left[g_{\dot{\mathbf{x}}}+\mathbf{p}^{T} \mathbf{f}_{\dot{\mathbf{x}}}\right]\right\} \delta \mathbf{x}(t)+\mathbf{f}^{T} \delta \mathbf{p}(t)\right) d t
\end{aligned}
$$

- To simplify things a bit, define

$$
g_{a}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) \equiv g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)+\mathbf{p}(t)^{T} \mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)
$$

- On the extremal, the variation must be zero, but since $\delta \mathbf{x}(t)$ and $\delta \mathbf{p}(t)$ can be arbitrary, can only occur if

$$
\begin{aligned}
\frac{\partial g_{a}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)}{\partial \mathbf{x}}-\frac{d}{d t}\left(\frac{\partial g_{a}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t)}{\partial \dot{\mathbf{x}}}\right) & =0 \\
\mathbf{f}(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) & =0
\end{aligned}
$$

- which are obviously a generalized version of the Euler equations obtained before.
- Note similarity of the definition of g_{a} here with the Hamiltonian on page 4-4.
- Will find that this generalization carries over to future optimizations as well.

General Terminal Conditions

- Now consider Type 3 constraints on 5-10, which are a very general form with t_{f} free and $\mathbf{x}\left(t_{f}\right)$ given by a condition:

$$
\mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=0
$$

- Constrained optimization, so as before, augment the cost functional

$$
J(\mathbf{x}(t), t)=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

with the constraint using Lagrange multipliers:

$$
J_{a}(\mathbf{x}(t), \boldsymbol{\nu}, t)=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\boldsymbol{\nu}^{T} \mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \dot{\mathbf{x}}(t), t) d t
$$

- Considering changes to $\mathbf{x}(t), t_{f}, \mathbf{x}\left(t_{f}\right)$ and $\boldsymbol{\nu}$, the variation for J_{a} is

$$
\begin{aligned}
\delta J_{a}= & h_{\mathbf{x}}\left(t_{f}\right) \delta \mathbf{x}_{f}+h_{t_{f}} \delta t_{f}+\mathbf{m}^{T}\left(t_{f}\right) \delta \boldsymbol{\nu}+\boldsymbol{\nu}^{T}\left(\mathbf{m}_{\mathbf{x}}\left(t_{f}\right) \delta \mathbf{x}_{f}+\mathbf{m}_{t_{f}}\left(t_{f}\right) \delta t_{f}\right) \\
& +\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}} \delta \mathbf{x}+g_{\dot{\mathbf{x}}} \delta \dot{\mathbf{x}}\right] d t+g\left(t_{f}\right) \delta t_{f} \\
= & {\left[h_{\mathbf{x}}\left(t_{f}\right)+\boldsymbol{\nu}^{T} \mathbf{m}_{\mathbf{x}}\left(t_{f}\right)\right] \delta \mathbf{x}_{f}+\left[h_{t_{f}}+\boldsymbol{\nu}^{T} \mathbf{m}_{t_{f}}\left(t_{f}\right)+g\left(t_{f}\right)\right] \delta t_{f} } \\
& +\mathbf{m}^{T}\left(t_{f}\right) \delta \boldsymbol{\nu}+\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}\right] \delta \mathbf{x} d t+g_{\dot{\mathbf{x}}}\left(t_{f}\right) \delta \mathbf{x}\left(t_{f}\right)
\end{aligned}
$$

- Now use that $\delta \mathbf{x}_{f}=\delta \mathbf{x}\left(t_{f}\right)+\dot{\mathbf{x}}\left(t_{f}\right) \delta t_{f}$ as before to get

$$
\begin{aligned}
\delta J_{a} & =\left[h_{\mathbf{x}}\left(t_{f}\right)+\boldsymbol{\nu}^{T} \mathbf{m}_{\mathbf{x}}\left(t_{f}\right)+g_{\dot{\mathbf{x}}}\left(t_{f}\right)\right] \delta \mathbf{x}_{f} \\
& +\left[h_{t_{f}}+\boldsymbol{\nu}^{T} \mathbf{m}_{t_{f}}\left(t_{f}\right)+g\left(t_{f}\right)-g_{\dot{\mathbf{x}}}\left(t_{f}\right) \dot{\mathbf{x}}\left(t_{f}\right)\right] \delta t_{f}+\mathbf{m}^{T}\left(t_{f}\right) \delta \boldsymbol{\nu} \\
& +\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}\right] \delta \mathbf{x} d t
\end{aligned}
$$

- Looks like a bit of a mess, but we can clean it up a bit using

$$
w\left(\mathbf{x}\left(t_{f}\right), \boldsymbol{\nu}, t_{f}\right)=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\boldsymbol{\nu}^{T} \mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)
$$

to get

$$
\begin{aligned}
\delta J_{a} & =\left[w_{\mathbf{x}}\left(t_{f}\right)+g_{\dot{\mathbf{x}}}\left(t_{f}\right)\right] \delta \mathbf{x}_{f} \\
& +\left[w_{t_{f}}+g\left(t_{f}\right)-g_{\dot{\mathbf{x}}}\left(t_{f}\right) \dot{\mathbf{x}}\left(t_{f}\right)\right] \delta t_{f}+\mathbf{m}^{T}\left(t_{f}\right) \delta \boldsymbol{\nu} \\
& +\int_{t_{0}}^{t_{f}}\left[g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}\right] \delta \mathbf{x} d t
\end{aligned}
$$

- Given the extra degrees of freedom in the multipliers, can treat all of the variations as independent \Rightarrow all coefficients must be zero to achieve $\delta J_{a}=0$
- So the necessary conditions are

$$
\begin{array}{rlr}
g_{\mathbf{x}}-\frac{d}{d t} g_{\dot{\mathbf{x}}}=0 & (\operatorname{dim} n) \\
w_{\mathbf{x}}\left(t_{f}\right)+g_{\dot{\mathbf{x}}}\left(t_{f}\right)=0 & & (\operatorname{dim} n) \\
w_{t_{f}}+g\left(t_{f}\right)-g_{\dot{\mathbf{x}}}\left(t_{f}\right) \dot{\mathbf{x}}\left(t_{f}\right)=0 & & (\operatorname{dim} 1)
\end{array}
$$

- With $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}(\operatorname{dim} n)$ and $\mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=0(\operatorname{dim} m)$ combined with last 2 conditions $\Rightarrow 2 n+m+1$ constraints
- Solution of Eulers equation has $2 n$ constants of integration for $x(t)$, and must find $\boldsymbol{\nu}(\operatorname{dim} m)$ and $t_{f} \Rightarrow 2 n+m+1$ unknowns
- Some special cases:
- If t_{f} is fixed, $h=h\left(\mathbf{x}\left(t_{f}\right)\right), \mathbf{m} \rightarrow \mathbf{m}\left(\mathbf{x}\left(t_{f}\right)\right)$ and we lose the last condition in box - others remain unchanged
- If t_{f} is fixed, $\mathbf{x}\left(t_{f}\right)$ free, then there is no \mathbf{m}, no $\boldsymbol{\nu}$ and w reduces to h.
- Kirk's book also considers several other type of constraints.

