MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.323 Lecture 4

HJB Equation

- DP in continuous time
- HJB Equation
- Continuous LQR

Factoids: for symmetric R

$$
\begin{aligned}
\frac{\partial \mathbf{u}^{T} R \mathbf{u}}{\partial \mathbf{u}} & =2 \mathbf{u}^{T} R \\
\frac{\partial R \mathbf{u}}{\partial \mathbf{u}} & =R
\end{aligned}
$$

- Have analyzed a couple of approximate solutions to the classic control problem of minimizing:

$$
\min J=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(\mathbf{x}(t), \mathbf{u}(t), t) d t
$$

subject to

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{a}(\mathbf{x}, \mathbf{u}, t) \\
\mathbf{x}\left(t_{0}\right) & =\text { given } \\
\mathbf{m}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right) & =0 \text { set of terminal conditions } \\
\mathbf{u}(t) & \in \mathcal{U} \text { set of possible constraints }
\end{aligned}
$$

- Previous approaches discretized in time, state, and control actions
- Useful for implementation on a computer, but now want to consider the exact solution in continuous time
- Result will be a nonlinear partial differential equation called the Hamilton-Jacobi-Bellman equation (HJB) - a key result.
- First step: consider cost over the interval $\left[t, t_{f}\right]$, where $t \leq t_{f}$ of any control sequence $\mathbf{u}(\tau), t \leq \tau \leq t_{f}$

$$
J(\mathbf{x}(t), t, \mathbf{u}(\tau))=h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t}^{t_{f}} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d \tau
$$

- Clearly the goal is to pick $\mathbf{u}(\tau), t \leq \tau \leq t_{f}$ to minimize this cost.

$$
J^{\star}(\mathbf{x}(t), t)=\min _{\substack{\mathbf{u}(\tau) \in \mathcal{U} \\ t \leq \tau \leq t_{f}}} J(\mathbf{x}(t), t, \mathbf{u}(\tau))
$$

- Approach:
- Split time interval $\left[t, t_{f}\right]$ into $[t, t+\Delta t]$ and $\left[t+\Delta t, t_{f}\right]$, and are specifically interested in the case where $\Delta t \rightarrow 0$
- Identify the optimal cost-to-go $J^{\star}(\mathbf{x}(t+\Delta t), t+\Delta t)$
- Determine the "stage cost" in time $[t, t+\Delta t]$
- Combine above to find best strategy from time t.
- Manipulate result into HJB equation.
- Split:

$$
\begin{aligned}
& \left.J^{\star}(\mathbf{x}(t), t)=\min _{\substack{\mathbf{u}(\tau) \in \mathcal{U} \\
t \leq \tau \leq t_{f}}}\left\{h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t}^{t_{f}} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau)\right) d \tau\right\} \\
& =\min _{\substack{\mathbf{u}(\tau) \in \mathcal{U} \\
t \leq \tau \leq t_{f}}}\left\{h\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)+\int_{t}^{t+\Delta t} g(\mathbf{x}, \mathbf{u}, \tau) d \tau+\int_{t+\Delta t}^{t_{f}} g(\mathbf{x}, \mathbf{u}, \tau) d \tau\right\}
\end{aligned}
$$

- Implicit here that at time $t+\Delta t$, the system will be at state $\mathbf{x}(t+\Delta t)$.
- But from the principle of optimality, we can write that the optimal cost-to-go from this state is:

$$
J^{\star}(\mathbf{x}(t+\Delta t), t+\Delta t)
$$

- Thus can rewrite the cost calculation as:

$$
J^{\star}(\mathbf{x}(t), t)=\min _{\substack{\mathbf{u}(\tau) \in \mathcal{U} \\ t \leq \tau \leq t+\Delta t}}\left\{\int_{t}^{t+\Delta t} g(\mathbf{x}, \mathbf{u}, \tau) d \tau+J^{\star}(\mathbf{x}(t+\Delta t), t+\Delta t)\right\}
$$

- Assuming $J^{\star}(\mathbf{x}(t+\Delta t), t+\Delta t)$ has bounded second derivatives in both arguments, can expand this cost as a Taylor series about $\mathbf{x}(t), t$

$$
\begin{aligned}
J^{\star}(\mathbf{x}(t+\Delta t), t+\Delta t) \approx & J^{\star}(\mathbf{x}(t), t)+\left[\frac{\partial J^{\star}}{\partial t}(\mathbf{x}(t), t)\right] \Delta t \\
& +\left[\frac{\partial J^{\star}}{\partial \mathbf{x}}(\mathbf{x}(t), t)\right](\mathbf{x}(t+\Delta t)-\mathbf{x}(t))
\end{aligned}
$$

- Which for small Δt can be compactly written as:

$$
\begin{aligned}
J^{\star}(\mathbf{x}(t+\Delta t), t+\Delta t) \approx & J^{\star}(\mathbf{x}(t), t)+J_{t}^{\star}(\mathbf{x}(t), t) \Delta t \\
& +J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t) \Delta t
\end{aligned}
$$

- Substitute this into the cost calculation with a small Δt to get

$$
\begin{aligned}
J^{\star}(\mathbf{x}(t), t)= & \min _{\mathbf{u}(t) \in \mathcal{U}}\left\{g(\mathbf{x}(t), \mathbf{u}(t), t) \Delta t+J^{\star}(\mathbf{x}(t), t)\right. \\
& \left.+J_{t}^{\star}(\mathbf{x}(t), t) \Delta t+J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t) \Delta t\right\}
\end{aligned}
$$

- Extract the terms that are independent of $\mathbf{u}(t)$ and cancel

$$
0=J_{t}^{\star}(\mathbf{x}(t), t)+\min _{\mathbf{u}(t) \in \mathcal{U}}\left\{g(\mathbf{x}(t), \mathbf{u}(t), t)+J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t)\right\}
$$

- This is a partial differential equation in $J^{\star}(\mathbf{x}(t), t)$ that is solved backwards in time with an initial condition that

$$
J^{\star}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=h\left(\mathbf{x}\left(t_{f}\right)\right)
$$

for $\mathbf{x}\left(t_{f}\right)$ and t_{f} combinations that satisfy $m\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=0$

- For simplicity, define the Hamiltonian

$$
\mathcal{H}\left(\mathbf{x}, \mathbf{u}, J_{\mathbf{x}}^{\star}, t\right)=g(\mathbf{x}(t), \mathbf{u}(t), t)+J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t)
$$

then the HJB equation is

$$
-J_{t}^{\star}(\mathbf{x}(t), t)=\min _{\mathbf{u}(t) \in \mathcal{U}} \mathcal{H}\left(\mathbf{x}(t), \mathbf{u}(t), J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t), t\right)
$$

- A very powerful result, that is both a necessary and sufficient condition for optimality
- But one that is hard to solve/use in general.
- Some references on numerical solution methods:
- M. G. Crandall, L. C. Evans, and P.-L. Lions, "Some properties of viscosity solutions of Hamilton-Jacobi equations," Transactions of the American Mathematical Society, vol. 282, no. 2, pp. 487-502, 1984.
- M. Bardi and I. Capuzzo-Dolcetta (1997), "Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations," Systems \& Control: Foundations \& Applications, Birkhauser, Boston.
- Can use it to directly solve the continuous LQR problem
- Consider the system with dynamics

$$
\dot{\mathbf{x}}=A \mathbf{x}+\mathbf{u}
$$

for which $A+A^{T}=0$ and $\|\mathbf{u}\| \leq 1$, and the cost function

$$
J=\int_{0}^{t_{f}} d t=t_{f}
$$

- Then the Hamiltonian is

$$
\mathcal{H}=1+J_{\mathbf{x}}^{\star}(A \mathbf{x}+\mathbf{u})
$$

and the constrained minimization of \mathcal{H} with respect to \mathbf{u} gives

$$
\mathbf{u}^{\star}=-\left(J_{\mathbf{x}}^{\star}\right)^{T} /\left\|J_{\mathbf{x}}^{\star}\right\|
$$

- Thus the HJB equation is:

$$
-J_{t}^{\star}=1+J_{\mathbf{x}}^{\star}(A \mathbf{x})-\left\|J_{\mathbf{x}}^{\star}\right\|
$$

- As a candidate solution, take $J^{\star}(\mathbf{x})=\mathbf{x}^{T} \mathbf{x} /\|\mathbf{x}\|=\|\mathbf{x}\|$, which is not an explicit function of t, so

$$
J_{\mathbf{x}}^{\star}=\frac{\mathbf{x}^{T}}{\|\mathbf{x}\|} \quad \text { and } \quad J_{t}^{\star}=0
$$

which gives:

$$
\begin{aligned}
0 & =1+\frac{\mathbf{x}^{T}}{\|\mathbf{x}\|}(A \mathbf{x})-\frac{\|\mathbf{x}\|}{\|\mathbf{x}\|} \\
& =\frac{1}{\|\mathbf{x}\|}\left(\mathbf{x}^{T} A \mathbf{x}\right) \\
& =\frac{1}{\|\mathbf{x}\|} \frac{1}{2} \mathbf{x}^{T}\left(A+A^{T}\right) \mathbf{x}=0
\end{aligned}
$$

so that the HJB is satisfied and the optimal control is:

$$
\mathbf{u}^{\star}=-\frac{\mathbf{x}}{\|\mathbf{x}\|}
$$

- Specialize to a linear system model and a quadratic cost function

$$
\dot{\mathbf{x}}(t)=A(t) \mathbf{x}(t)+B(t) \mathbf{u}(t)
$$

$J=\frac{1}{2} \mathbf{x}\left(t_{f}\right)^{T} H \mathbf{x}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}}\left\{\mathbf{x}(t)^{T} R_{\mathrm{xx}}(t) \mathbf{x}(t)+\mathbf{u}(t)^{T} R_{\mathrm{uu}}(t) \mathbf{u}(t)\right\} d t$

- Assume that t_{f} fixed and there are no bounds on \mathbf{u},
- Assume $H, R_{\mathrm{xx}}(t) \geq 0$ and $R_{\mathrm{uu}}(t)>0$, then

$$
\begin{array}{r}
\mathcal{H}\left(\mathbf{x}, \mathbf{u}, J_{\mathbf{x}}^{\star}, t\right)=\frac{1}{2}\left[\mathbf{x}(t)^{T} R_{\mathbf{x x}}(t) \mathbf{x}(t)+\mathbf{u}(t)^{T} R_{\mathrm{uu}}(t) \mathbf{u}(t)\right] \\
+J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)[A(t) \mathbf{x}(t)+B(t) \mathbf{u}(t)]
\end{array}
$$

- Now need to find the minimum of \mathcal{H} with respect to \mathbf{u}, which will occur at a stationary point that we can find using (no constraints)

$$
\frac{\partial \mathcal{H}}{\partial \mathbf{u}}=\mathbf{u}(t)^{T} R_{\mathrm{uu}}(t)+J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) B(t)=0
$$

- Which gives the optimal control law:

$$
\mathbf{u}^{\star}(t)=-R_{\mathrm{uu}}^{-1}(t) B(t)^{T} J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)^{T}
$$

- Since

$$
\frac{\partial^{2} \mathcal{H}}{\partial \mathbf{u}^{2}}=R_{\mathrm{uu}}(t)>0
$$

then this defines a global minimum.

- Given this control law, can rewrite the Hamiltonian as:

$$
\begin{aligned}
& \mathcal{H}\left(\mathbf{x}, \mathbf{u}^{\star}, J_{\mathbf{x}}^{\star}, t\right)= \\
& \frac{1}{2}\left[\mathbf{x}(t)^{T} R_{\mathrm{xx}}(t) \mathbf{x}(t)+J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) B(t) R_{\mathrm{uu}}^{-1}(t) R_{\mathrm{uu}}(t) R_{\mathrm{uu}}^{-1}(t) B(t)^{T} J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)^{T}\right] \\
& +J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)\left[A(t) \mathbf{x}(t)-B(t) R_{\mathrm{uu}}^{-1}(t) B(t)^{T} J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)^{T}\right] \\
& =\frac{1}{2} \mathbf{x}(t)^{T} R_{\mathrm{xx}}(t) \mathbf{x}(t)+J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) A(t) \mathbf{x}(t) \\
& \quad-\frac{1}{2} J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t) B(t) R_{\mathrm{uu}}^{-1}(t) B(t)^{T} J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)^{T}
\end{aligned}
$$

- Might be difficult to see where this is heading, but note that the boundary condition for this PDE is:

$$
J^{\star}\left(\mathbf{x}\left(t_{f}\right), t_{f}\right)=\frac{1}{2} \mathbf{x}^{T}\left(t_{f}\right) H \mathbf{x}\left(t_{f}\right)
$$

- So a candidate solution to investigate is to maintain a quadratic form for this cost for all time t. So could assume that

$$
J^{\star}(\mathbf{x}(t), t)=\frac{1}{2} \mathbf{x}^{T}(t) P(t) \mathbf{x}(t), \quad P(t)=P^{T}(t)
$$

and see what conditions we must impose on $P(t) .{ }^{6}$

- Note that in this case, J^{\star} is a function of the variables \mathbf{x} and t^{7}

$$
\begin{aligned}
\frac{\partial J^{\star}}{\partial \mathbf{x}} & =\mathbf{x}^{T}(t) P(t) \\
\frac{\partial J^{\star}}{\partial t} & =\frac{1}{2} \mathbf{x}^{T}(t) \dot{P}(t) \mathbf{x}(t)
\end{aligned}
$$

- To use HJB equation need to evaluate:

$$
-J_{t}^{\star}(\mathbf{x}(t), t)=\min _{\mathbf{u}(t) \in \mathcal{U}} \mathcal{H}\left(\mathbf{x}(t), \mathbf{u}(t), J_{\mathbf{x}}^{\star}, t\right)
$$

[^0]- Substitute candidate solution into HJB:

$$
\begin{aligned}
&-\frac{1}{2} \mathbf{x}(t)^{T} \dot{P}(t) \mathbf{x}(t)= \frac{1}{2} \mathbf{x}(t)^{T} R_{\mathrm{xx}}(t) \mathbf{x}(t)+\mathbf{x}^{T} P(t) A(t) \mathbf{x}(t) \\
&-\frac{1}{2} \mathbf{x}^{T}(t) P(t) B(t) R_{\mathrm{uu}}^{-1}(t) B(t)^{T} P(t) \mathbf{x}(t) \\
&= \frac{1}{2} \mathbf{x}(t)^{T} R_{\mathrm{xx}}(t) \mathbf{x}(t)+\frac{1}{2} \mathbf{x}^{T}(t)\left\{P(t) A(t)+A(t)^{T} P(t)\right\} \mathbf{x}(t) \\
&-\frac{1}{2} \mathbf{x}^{T}(t) P(t) B(t) R_{\mathrm{uu}}^{-1}(t) B(t)^{T} P(t) \mathbf{x}(t)
\end{aligned}
$$

which must be true for all $\mathbf{x}(t)$, so we require that $P(t)$ solve

$$
\begin{aligned}
-\dot{P}(t) & =P(t) A(t)+A(t)^{T} P(t)+R_{\mathrm{xx}}(t)-P(t) B(t) R_{\mathrm{uu}}^{-1}(t) B(t)^{T} P(t) \\
P\left(t_{f}\right) & =H
\end{aligned}
$$

- If $P(t)$ solves this Differential Riccati Equation, then the HJB equation is satisfied by the candidate $J^{\star}(\mathbf{x}(t), t)$ and the resulting control is optimal.
- Key thing about this J^{\star} solution is that, since $J_{\mathbf{x}}^{\star}=\mathbf{x}^{T}(t) P(t)$, then

$$
\begin{aligned}
\mathbf{u}^{\star}(t) & =-R_{\mathrm{uu}}^{-1}(t) B(t)^{T} J_{\mathbf{x}}^{\star}(\mathbf{x}(t), t)^{T} \\
& =-R_{\mathrm{uu}}^{-1}(t) B(t)^{T} P(t) \mathbf{x}(t)
\end{aligned}
$$

- Thus optimal feedback control is a linear state feedback with gain

$$
F(t)=R_{\mathrm{uu}}^{-1}(t) B(t)^{T} P(t) \Rightarrow \mathbf{u}(t)=-F(t) \mathbf{x}(t)
$$

Can be solved for ahead of time.

- As before, can evaluate the performance of some arbitrary timevarying feedback gain $\mathbf{u}=-G(t) \mathbf{x}(t)$, and the result is that

$$
J_{G}=\frac{1}{2} \mathbf{x}^{T} S(t) \mathbf{x}
$$

where $S(t)$ solves

$$
\begin{aligned}
-\dot{S}(t)= & \{A(t)-B(t) G(t)\}^{T} S(t)+S(t)\{A(t)-B(t) G(t)\} \\
& \quad+R_{\mathrm{xx}}(t)+G(t)^{T} R_{\mathrm{uu}}(t) G(t) \\
S\left(t_{f}\right)= & H
\end{aligned}
$$

- Since this must be true for arbitrary G, then would expect that this reduces to Riccati Equation if $G(t) \equiv R_{\mathrm{uu}}^{-1}(t) B^{T}(t) S(t)$
- If we assume LTI dynamics and let $t_{f} \rightarrow \infty$, then at any finite time t, would expect the Differential Riccati Equation to settle down to a steady state value (if it exists) which is the solution of

$$
P A+A^{T} P+R_{\mathrm{xx}}-P B R_{\mathrm{uu}}^{-1} B^{T} P=0
$$

- Called the (Control) Algebraic Riccati Equation (CARE)
- Typically assume that $R_{\mathrm{xx}}=C_{z}^{T} R_{\mathrm{zz}} C_{z}, R_{\mathrm{zz}}>0$ associated with performance output variable $\mathbf{z}(t)=C_{z} \mathbf{x}(t)$
- With terminal penalty, $H=0$, the solution to the differential Riccati Equation (DRE) approaches a constant iff the system has no poles that are unstable, uncontrollable ${ }^{8}$, and observable ${ }^{9}$ by $\mathbf{z}(t)$
- If a constant steady state solution to the DRE exists, then it is a positive semi-definite, symmetric solution of the CARE.
- If $\left[A, B, C_{z}\right]$ is both stabilizable and detectable (i.e. all modes are stable or seen in the cost function), then:
- Independent of $H \geq 0$, the steady state solution $P_{s s}$ of the DRE approaches the unique PSD symmetric solution of the CARE.
- If a steady state solution exists $P_{s s}$ to the DRE, then the closed-loop system using the static form of the feedback

$$
\mathbf{u}(t)=-R_{\mathrm{uu}}^{-1} B^{T} P_{s s} \mathbf{x}(t)=-F_{s s} \mathbf{x}(t)
$$

is asymptotically stable if and only if the system $\left[A, B, C_{z}\right]$ is stabilizable and detectable.

- This steady state control minimizes the infinite horizon cost function $\lim _{t_{f} \rightarrow \infty} J$ for all $H \geq 0$
- The solution $P_{s s}$ is positive definite if and only if the system $\left[A, B, C_{z}\right]$ is stabilizable and completely observable.
- See Kwakernaak and Sivan, page 237, Section 3.4.3.

[^1]- A scalar system with dynamics $\dot{x}=a x+b u$ and with $\operatorname{cost}\left(R_{\mathrm{xx}}>0\right.$ and $R_{\text {uu }}>0$)

$$
J=\int_{0}^{\infty}\left(R_{\mathrm{xx}} x^{2}(t)+R_{\mathrm{uu}} u^{2}(t)\right) d t
$$

- This simple system represents one of the few cases for which the differential Riccati equation can be solved analytically:

$$
P(\tau)=\frac{\left(a P_{t_{f}}+R_{\mathrm{xx}}\right) \sinh (\beta \tau)+\beta P_{t_{f}} \cosh (\beta \tau)}{\left(b^{2} P_{t_{f}} / R_{\mathrm{uu}}-a\right) \sinh (\beta \tau)+\beta \cosh (\beta \tau)}
$$

where $\tau=t_{f}-t, \beta=\sqrt{a^{2}+b^{2}\left(R_{\mathrm{xx}} / R_{\mathrm{uu}}\right)}$.

- Note that for given a and b, ratio $R_{\mathrm{xx}} / R_{\text {uu }}$ determines the time constant of the transient in $P(t)$ (determined by β).
- The steady-state P solves the CARE:

$$
2 a P_{s s}+R_{\mathrm{xx}}-P_{s s}^{2} b^{2} / R_{\mathrm{uu}}=0
$$

which gives (take positive one) that

$$
P_{s s}=\frac{a+\sqrt{a^{2}+b^{2} R_{\mathrm{xx}} / R_{\mathrm{uu}}}}{b^{2} / R_{\mathrm{uu}}}=\frac{a+\beta}{b^{2} / R_{\mathrm{uu}}}=\frac{a+\beta}{b^{2} / R_{\mathrm{uu}}}\left(\frac{-a+\beta}{-a+\beta}\right)>0
$$

- With $P_{t_{f}}=0$, the solution of the differential equation reduces to:

$$
P(\tau)=\frac{R_{\mathrm{xx}} \sinh (\beta \tau)}{(-a) \sinh (\beta \tau)+\beta \cosh (\beta \tau)}
$$

where as $\tau \rightarrow t_{f}(\rightarrow \infty)$ then $\sinh (\beta \tau) \rightarrow \cosh (\beta \tau) \rightarrow e^{\beta \tau} / 2$, so

$$
P(\tau)=\frac{R_{\mathrm{xx}} \sinh (\beta \tau)}{(-a) \sinh (\beta \tau)+\beta \cosh (\beta \tau)} \rightarrow \frac{R_{\mathrm{xx}}}{(-a)+\beta}=P_{s s}
$$

- Then the steady state feedback controller is $u(t)=-K x(t)$ where

$$
K_{s s}=R_{\mathrm{uu}}^{-1} b P_{s s}=\frac{a+\sqrt{a^{2}+b^{2} R_{\mathrm{xx}} / R_{\mathrm{uu}}}}{b}
$$

- The closed-loop dynamics are

$$
\begin{aligned}
\dot{x} & =\left(a-b K_{s s}\right) x=A_{c l} x(t) \\
& =\left(a-\frac{b}{b}\left(a+\sqrt{a^{2}+b^{2} R_{\mathrm{xx}} / R_{\mathrm{uu}}}\right)\right) x \\
& =-\sqrt{a^{2}+b^{2} R_{\mathrm{xx}} / R_{\mathrm{uu}}} x
\end{aligned}
$$

which are clearly stable.

- As $R_{\mathrm{xx}} / R_{\mathrm{uu}} \rightarrow \infty, A_{c l} \approx-|b| \sqrt{R_{\mathrm{xx}} / R_{\mathrm{uu}}}$
- Cheap control problem
- Note that smaller R_{uu} leads to much faster response.
- As $R_{\mathrm{xx}} / R_{\mathrm{uu}} \rightarrow 0, K \approx(a+|a|) / b$
- Expensive control problem
- If $a<0$ (open-loop stable), $K \approx 0$ and $A_{c l}=a-b K \approx a$
- If $a>0$ (OL unstable), $K \approx 2 a / b$ and $A_{c l}=a-b K \approx-a$
- Note that in the expensive control case, the controller tries to do as little as possible, but it must stabilize the unstable open-loop system.
- Observation: optimal definition of "as little as possible" is to put the closed-loop pole at the reflection of the open-loop pole about the imaginary axis.
- To numerically integrate solution of P, note that we can use standard Matlab integration tools if we can rewrite the DRE in vector form.
- Define a vec operator so that

$$
\operatorname{vec}(P)=\left[\begin{array}{c}
P_{11} \\
P_{12} \\
\vdots \\
P_{1 n} \\
P_{22} \\
P_{23} \\
\vdots \\
P_{n n}
\end{array}\right] \equiv y
$$

- The unvec (y) operation is the straightforward
- Can now write the DRE as differential equation in the variable y
- Note that with $\tau=t_{f}-t$, then $d \tau=-d t$,
$-t=t_{f}$ corresponds to $\tau=0, t=0$ corresponds to $\tau=t_{f}$
- Can do the integration forward in time variable $\tau: 0 \rightarrow t_{f}$
- Then define a Matlab function as
doty $=$ function(y);
global A B Rxx Ruu \%
P=unvec(y); \%
$\%$ assumes that P derivative wrt to tau (so no negative) $\operatorname{dot} P=\left(P * A+A^{\wedge} T * P+R x x-P * B * R u u \wedge\{-1\} * B^{\wedge} T * P\right) ; \%$ doty $=\operatorname{vec}(\operatorname{dotP}) ; \%$
return
- Which is integrated from $\tau=0$ with initial condition H
- Code uses a more crude form of integration

Figure 4.1: Comparison of numerical and analytical P

$$
A=3 B=11 R_{x x}=7 R_{u u}=4 P_{t f}=13
$$

Figure 4.2: Comparison showing response with much larger $R_{x x} / R_{u x}$

$$
A=3 B=11 R_{x x}=7 R_{u u}=400 P_{t f}=13
$$

Figure 4.3: State response with high and low $R_{u u}$. State response with timevarying gain almost indistinguishable - highly dynamic part of x response ends before significant variation in P.

Figure 4.4: Comparison of numerical and analytical P using a better integration scheme

Numerical Calculation of P

```
% Simple LQR example showing time varying P and gains
% 16.323 Spring 2008
% Jonathan How
% reg2.m
clear all;close all;
set(0, 'DefaultAxesFontSize', 14, 'DefaultAxesFontWeight','demi')
set(0, 'DefaultTextFontSize', 14, 'DefaultTextFontWeight','demi')
global A B Rxx Ruu
A=3;B=11;Rxx=7;Ptf=13;tf=2;dt=.0001;
Ruu=20^2;
Ruu=2^2;
% integrate the P backwards (crude form)
time=[0:dt:tf];
P=zeros(1,length(time));K=zeros(1,length(time));Pcurr=Ptf;
for kk=0:length(time)-1
    P(length(time)-kk)=Pcurr;
    K(length(time)-kk)=inv(Ruu)*B'*Pcurr;
    Pdot=-Pcurr*A-A'*Pcurr-Rxx+Pcurr*B*inv(Ruu)*B'*Pcurr;
    Pcurr=Pcurr-dt*Pdot;
end
options=odeset('RelTol',1e-6,'AbsTol',1e-6)
[tau,y]=ode45(@doty,[0 tf],vec(Ptf));
Tnum=[];Pnum=[];Fnum=[];
for i=1:length(tau)
    Tnum(length(tau)-i+1)=tf-tau(i);
    temp=unvec(y(i,:));
    Pnum(length(tau)-i+1,:,:)=temp;
    Fnum(length(tau)-i+1,:)=-inv(Ruu)*B'*temp;
end
% get the SS result from LQR
[klqr,Plqr]=lqr(A,B,Rxx,Ruu);
% Analytical pred
beta=sqrt(A^2+Rxx/Ruu*B^2);
t=tf-time;
Pan=((A*Ptf+Rxx)*sinh(beta*t)+beta*Ptf*cosh(beta*t))./..
    ((B^2*Ptf/Ruu-A)*sinh (beta*t)+beta*cosh(beta*t));
Pan2=((A*Ptf+Rxx)*sinh(beta*(tf-Tnum))+beta*Ptf*cosh(beta*(tf-Tnum)))./...
    ((B^2*Ptf/Ruu-A)*sinh(beta*(tf-Tnum))+beta*cosh(beta*(tf-Tnum)));
figure(1);clf
plot(time,P,'bs',time,Pan,'r.',[0 tf],[1 1]*Plqr,'m--')
title(['A = ',num2str(A),' B = ',num2str(B),' R_{xx} = ',num2str(Rxx),...
    , R_{uu} = ',num2str(Ruu),' P_{tf} = ',num2str(Ptf)])
legend('Numerical','Analytic','Pss','Location','West')
xlabel('time');ylabel('P')
if Ruu > 10
    print -r300 -dpng reg2_1.png;
else
    print -r300 -dpng reg2_2.png;
end
figure(3);clf
plot(Tnum,Pnum,'bs',Tnum,Pan2,'r.',[0 tf],[1 1]*Plqr,'m--')
title(['A = ',num2str (A),' B = ',num2str (B),' R_{xx} = ',num2str(Rxx),\ldots.
    ' R_{uu} = ',num2str(Ruu),' P_{tf} = ',num2str(Ptf)])
legend('Numerical','Analytic','Pss','Location','West')
xlabel('time');ylabel('P')
if Ruu > 10
    print -r300 -dpng reg2_13.png;
else
    print -r300 -dpng reg2_23.png;
end
```

```
Pan2=inline('((A*Ptf+Rxx)*sinh(beta*t)+beta*Ptf* cosh(beta*t))/((B^2*Ptf/Ruu-A)*sinh(beta*t)+beta*cosh(beta*t))');
x1=zeros(1,length(time)); x2=zeros(1,length(time));
xcurr1=[1]';xcurr2=[1]';
for kk=1:length(time)-1
    x1(:,kk)=xcurr1; x2(:,kk)=xcurr2;
    xdot1=(A-B*Ruu^(-1)*B'*Pan2(A,B,Ptf,Ruu,Rxx,beta,tf-(kk-1)*dt))*x1(: , kk);
    xdot2=(A-B*klqr)*x2(:,kk);
    xcurr1=xcurr1+xdot1*dt;
    xcurr2=xcurr2+xdot2*dt;
end
figure(2);clf
plot(time,x2,'bs',time,x1,'r.');xlabel('time');ylabel('x')
title(['A = ',num2str(A),' B = ',num2str(B),' R_{xx} = ',num2str(Rxx),...
            , R_{uu} = ',num2str(Ruu),' P_{tf} = ',num2str(Ptf)])
legend('K_{ss}','K_{analytic}','Location','NorthEast')
if Ruu > 10
    print -r300 -dpng reg2_11.png;
else
    print -r300 -dpng reg2_22.png;
end
```

```
function [doy]=doty(t,y);
global A B Rxx Ruu;
P=unvec(y);
dotP=P*A+A'*P+Rxx-P*B*Ruu^(-1)*B'*P;
doy=vec(dotP);
return
```

```
function y=vec(P);
y=[];
for ii=1:length(P);
    y=[y;P(ii,ii:end)'];
end
return
```

```
function P=unvec(y);
N=max(roots([1 1 1 -2*length(y)]));
P=[];kk=N;kk0=1;
for ii=1:N;
    P(ii,ii:N)=[y(kk0+[0:kk-1])]';
    kk0=kk0+kk;
    kk=kk-1;
end
P=(P+P')-diag(diag(P));
return
```

- Simple system with $t_{0}=0$ and $t_{f}=10 \mathrm{sec}$.

$$
\begin{gathered}
\dot{x}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
2 J=x^{T}(10)\left[\begin{array}{ll}
0 & 0 \\
0 & h
\end{array}\right] x(10)+\int_{0}^{10}\left\{x^{T}(t)\left[\begin{array}{ll}
q & 0 \\
0 & 0
\end{array}\right] x(t)+r u^{2}(t)\right\} d t
\end{gathered}
$$

- Compute gains using both time-varying $P(t)$ and steady-state value.

Figure 4.5: Set $q=1, r=3, h=4$

- Find state solution $x(0)=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ using both sets of gains

Figure 4.6: Time-varying and constant gains $-K_{l q r}=\left[\begin{array}{ll}0.5774 & 2.4679\end{array}\right]$

Figure 4.7: State response - Constant gain and time-varying gain almost indistinguishable because the transient dies out before the time at which the gains start to change - effectively a steady state problem.

- For most applications, the static gains are more than adequate - it is only when the terminal conditions are important in a short-time horizon problem that the time-varying gains should be used.
- Significant savings in implementation complexity \& computation.

Finite Time LQR Example

```
% Simple LQR example showing time varying P and gains
% 16.323 Spring 2008
% Jonathan How
% reg1.m
%
clear all;%close all;
set(0, 'DefaultAxesFontSize', 14, 'DefaultAxesFontWeight','demi')
set(0, 'DefaultTextFontSize', 14, 'DefaultTextFontWeight','demi')
global A B Rxx Ruu
jprint = 0;
h=4;q=1;r=3;
A=[[\begin{array}{lll}{0}&{1;0}&{1}\end{array}];B=[\begin{array}{lll}{0}&{1}\end{array}];tf=10;dt=.01;
Ptf=[0 0;0 h];Rxx=[q 0;0 0];Ruu=r;
Ptf=[0 0;0 1];Rxx=[q 0;0 100];Ruu=r;
% alternative calc of Ricc solution
H=[A -B*B'/r ; -Rxx -A'];
[V,D]=eig(H); % check order of eigenvalues
Psi11=V(1:2,1:2);
Psi21=V(3:4,1:2);
Ptest=Psi21*inv(Psi11);
if 0
% integrate the P backwards (crude)
time=[0:dt:tf];
P=zeros(2,2,length(time));
K=zeros(1,2,length(time));
Pcurr=Ptf;
for kk=0:length(time)-1
    P(:,:,length(time)-kk)=Pcurr;
    K(:,:,length(time)-kk)=inv(Ruu)*B'*Pcurr;
    Pdot=-Pcurr*A-A'*Pcurr-Rxx+Pcurr*B*inv(Ruu)*B'*Pcurr;
    Pcurr=Pcurr-dt*Pdot;
end
else
% integrate forwards (ODE)
options=odeset('RelTol',1e-6,'AbsTol',1e-6)
[tau,y]=ode45(@doty,[0 tf],vec(Ptf),options);
Tnum=[];Pnum=[];Fnum=[];
for i=1:length(tau)
    time(length(tau)-i+1)=tf-tau(i);
    temp=unvec(y(i,:));
    P(:,:,length(tau)-i+1)=temp;
    K(:, :,length(tau)-i+1)=inv(Ruu)*B'*temp;
end
end % if 0
% get the SS result from LQR
[klqr,Plqr]=lqr(A,B,Rxx,Ruu);
x1=zeros(2,1,length(time));
x2=zeros(2,1,length(time));
xcurr1=[1 1]';
xcurr2=[11 1]';
for kk=1:length(time)-1
    dt=time(kk+1)-time(kk);
    x1(:,:,kk)=xcurr1;
    x2(:,:,kk)=xcurr2;
    xdot1=(A-B*K(:,:,kk))*x1(:, : ,kk);
    xdot2=(A-B*klqr)*x2(:,:,kk);
    xcurr1=xcurr1+xdot1*dt;
    xcurr2=xcurr2+xdot2*dt;
end
```

```
68
end
```

```
x1(:,:,length(time))=xcurr1;
```

x1(:,:,length(time))=xcurr1;
x2(:,:,length(time))=xcurr2;
x2(:,:,length(time))=xcurr2;
figure(5);clf
figure(5);clf
subplot(221)
subplot(221)
plot(time,squeeze(K(1,1,:)),[0 10],[1 1]*klqr(1),'m--','LineWidth',2)
plot(time,squeeze(K(1,1,:)),[0 10],[1 1]*klqr(1),'m--','LineWidth',2)
legend('K_1(t)', 'K_1')
legend('K_1(t)', 'K_1')
xlabel('Time (sec)');ylabel('Gains')
xlabel('Time (sec)');ylabel('Gains')
title(['q = ',num2str(1),' r = ',num2str(r),' h = ',num2str(h)])
title(['q = ',num2str(1),' r = ',num2str(r),' h = ',num2str(h)])
subplot(222)
subplot(222)
plot(time,squeeze(K(1,2,:)),[0 10],[1 1]*klqr(2),'m--','LineWidth',2)
plot(time,squeeze(K(1,2,:)),[0 10],[1 1]*klqr(2),'m--','LineWidth',2)
legend('K_2(t)','K_2')
legend('K_2(t)','K_2')
xlabel('Time (sec)');ylabel('Gains')
xlabel('Time (sec)');ylabel('Gains')
subplot(223)
subplot(223)
plot(time,squeeze(x1(1,1,:)),time,squeeze(x1(2,1,:)),'m--','LineWidth',2),
plot(time,squeeze(x1(1,1,:)),time,squeeze(x1(2,1,:)),'m--','LineWidth',2),
legend('x_1','x_2')
legend('x_1','x_2')
xlabel('Time (sec)');ylabel('States');title('Dynamic Gains')
xlabel('Time (sec)');ylabel('States');title('Dynamic Gains')
subplot(224)
subplot(224)
plot(time,squeeze(x2(1,1,:)),time,squeeze(x2(2,1,:)),'m--','LineWidth',2),
plot(time,squeeze(x2(1,1,:)),time,squeeze(x2(2,1,:)),'m--','LineWidth',2),
legend('x_1','x_2')
legend('x_1','x_2')
xlabel('Time (sec)');ylabel('States');title('Static Gains')
xlabel('Time (sec)');ylabel('States');title('Static Gains')
figure(6);clf
figure(6);clf
subplot(221)
subplot(221)
plot(time,squeeze(P(1,1,:)),[0 10],[1 1]*Plqr(1,1),'m--','LineWidth', 2)
plot(time,squeeze(P(1,1,:)),[0 10],[1 1]*Plqr(1,1),'m--','LineWidth', 2)
legend('P(t) (1,1)','P_{lqr}(1,1)','Location','SouthWest')
legend('P(t) (1,1)','P_{lqr}(1,1)','Location','SouthWest')
xlabel('Time (sec)');ylabel('P')
xlabel('Time (sec)');ylabel('P')
title(['q = ', num2str(1),' r = ',num2str(r),' h = ',num2str(h)])
title(['q = ', num2str(1),' r = ',num2str(r),' h = ',num2str(h)])
subplot(222)
subplot(222)
plot(time,squeeze(P(1,2,:)),[0 10],[1 1]*Plqr(1,2),'m--','LineWidth',2)
plot(time,squeeze(P(1,2,:)),[0 10],[1 1]*Plqr(1,2),'m--','LineWidth',2)
legend('P(t)(1,2)','P_{lqr}(1,2)','Location','SouthWest')
legend('P(t)(1,2)','P_{lqr}(1,2)','Location','SouthWest')
xlabel('Time (sec)');ylabel('P')
xlabel('Time (sec)');ylabel('P')
subplot(223)
subplot(223)
plot(time,squeeze(P(2,1,:)),[0 10],[1 1]*squeeze(Plqr(2,1)),'m--','LineWidth',2),
plot(time,squeeze(P(2,1,:)),[0 10],[1 1]*squeeze(Plqr(2,1)),'m--','LineWidth',2),
legend('P(t) (2,1)','P_{lqr}(2,1)','Location','SouthWest')
legend('P(t) (2,1)','P_{lqr}(2,1)','Location','SouthWest')
xlabel('Time (sec)');ylabel('P')
xlabel('Time (sec)');ylabel('P')
subplot(224)
subplot(224)
plot(time,squeeze(P(2,2,:)),[0 10],[1 1]*squeeze(Plqr(2,2)),'m--','LineWidth', 2),
plot(time,squeeze(P(2,2,:)),[0 10],[1 1]*squeeze(Plqr(2,2)),'m--','LineWidth', 2),
legend('P(t) (2,2)','P_{lqr}(2,2)','Location','SouthWest')
legend('P(t) (2,2)','P_{lqr}(2,2)','Location','SouthWest')
xlabel('Time (sec)');ylabel('P')
xlabel('Time (sec)');ylabel('P')
axis([0 10 0 8])
axis([0 10 0 8])
if jprint; print -dpng -r300 reg1_6.png
if jprint; print -dpng -r300 reg1_6.png
end
end
figure(1);clf
figure(1);clf
plot(time,squeeze(K(1,1,:)),[0 10],[1 1]*klqr(1),'r--','LineWidth',3)
plot(time,squeeze(K(1,1,:)),[0 10],[1 1]*klqr(1),'r--','LineWidth',3)
legend('K_1(t)(1,1)','K_1(1,1)','Location','SouthWest')
legend('K_1(t)(1,1)','K_1(1,1)','Location','SouthWest')
xlabel('Time (sec)');ylabel('Gains')
xlabel('Time (sec)');ylabel('Gains')
title(['q = ',num2str(1),' r = ',num2str(r),' h = ',num2str(h)])
title(['q = ',num2str(1),' r = ',num2str(r),' h = ',num2str(h)])
print -dpng -r300 reg1_1.png
print -dpng -r300 reg1_1.png
figure(2);clf
figure(2);clf
plot(time,squeeze(K(1,2,:)),[0 10],[1 1]*klqr(2),'r--','LineWidth',3)
plot(time,squeeze(K(1,2,:)),[0 10],[1 1]*klqr(2),'r--','LineWidth',3)
legend('K_2(t) (1,2)','K_2(1,2)', 'Location','SouthWest')
legend('K_2(t) (1,2)','K_2(1,2)', 'Location','SouthWest')
xlabel('Time (sec)');ylabel('Gains')
xlabel('Time (sec)');ylabel('Gains')
if jprint; print -dpng -r300 reg1_2.png
if jprint; print -dpng -r300 reg1_2.png
end
end
figure(3);clf
figure(3);clf
plot(time,squeeze(x1(1,1,:)),time,squeeze(x1(2,1,:)),'r--','LineWidth',3),
plot(time,squeeze(x1(1,1,:)),time,squeeze(x1(2,1,:)),'r--','LineWidth',3),
legend('x_1','x_2')
legend('x_1','x_2')
xlabel('Time (sec)');ylabel('States');title('Dynamic Gains')
xlabel('Time (sec)');ylabel('States');title('Dynamic Gains')
if jprint; print -dpng -r300 reg1_3.png
if jprint; print -dpng -r300 reg1_3.png
end
end
figure(4);clf
figure(4);clf
plot(time,squeeze(x2(1,1,:)),time,squeeze(x2(2,1,:)),'r--','LineWidth',3),
plot(time,squeeze(x2(1,1,:)),time,squeeze(x2(2,1,:)),'r--','LineWidth',3),
legend('x_1','x_2')
legend('x_1','x_2')
xlabel('Time (sec)');ylabel('States');title('Static Gains');
xlabel('Time (sec)');ylabel('States');title('Static Gains');
if jprint; print -dpng -r300 reg1_4.png

```
if jprint; print -dpng -r300 reg1_4.png
```


Weighting Matrix Selection

- A good rule of thumb when selecting the weighting matrices R_{xx} and R_{uu} is to normalize the signals:

$$
\begin{aligned}
& R_{\mathrm{xx}}=\left[\begin{array}{cccc}
\frac{\alpha_{1}^{2}}{\left(x_{1}\right)_{\max }^{2}} & & & \\
& \frac{\alpha_{2}^{2}}{\left(x_{2}\right)_{\max }^{2}} & & \\
& & \ddots & \\
R_{\mathrm{uu}}=\rho\left[\begin{array}{llll}
\frac{\beta_{1}^{2}}{\left(u_{1}\right)_{\max }^{2}} & & & \beta_{n}^{2} \\
& \frac{\beta_{2}^{2}}{\left(x_{n}\right)_{\max }^{2}} & \\
& & \ddots & \\
& & & \frac{\beta_{m}^{2}}{\left(u_{m}\right)_{\max }^{2}}
\end{array}\right]
\end{array} .\right.
\end{aligned}
$$

- The $\left(x_{i}\right)_{\max }$ and $\left(u_{i}\right)_{\max }$ represent the largest desired response/control input for that component of the state/actuator signal.
- The $\sum_{i} \alpha_{i}^{2}=1$ and $\sum_{i} \beta_{i}^{2}=1$ are used to add an additional relative weighting on the various components of the state/control
- ρ is used as the last relative weighting between the control and state penalties \Rightarrow gives us a relatively concrete way to discuss the relative size of R_{xx} and R_{uu} and their ratio $R_{\mathrm{xx}} / R_{\mathrm{uu}}$
- Note: to directly compare the continuous and discrete LQR, you must modify the weighting matrices for the discrete case, as outlined here using lqrd.

[^0]: ${ }^{6}$ See AM, pg. 21 on how to avoid having to make this assumption.
 ${ }^{7}$ Partial derivatives taken wrt one variable assuming the other is fixed. Note that there are 2 independent variables in this problem x and $t . x$ is time-varying, but it is not a function of t.

[^1]: ${ }^{8} 16.31$ Notes on Controllability
 ${ }^{9}$ 16.31 Notes on Observability

