MIT OpenCourseWare
http://ocw.mit.edu

### 16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

### 16.323 Lecture 3

## Dynamic Programming

- Principle of Optimality
- Dynamic Programming
- Discrete LQR


Figure by MIT OpenCourseWare.

- DP is a central idea of control theory that is based on the

Principle of Optimality: Suppose the optimal solution for a problem passes through some intermediate point $\left(x_{1}, t_{1}\right)$, then the optimal solution to the same problem starting at $\left(x_{1}, t_{1}\right)$ must be the continuation of the same path.


- Proof? What would the implications be if it was false?
- This principle leads to:
- Numerical solution procedure called Dynamic Programming for solving multi-stage decision making problems.
- Theoretical results on the structure of the resulting control law.
- Texts:
- Dynamic Programming (Paperback) by Richard Bellman (Dover)
- Dynamic Programming and Optimal Control (Vol 1 and 2) by D. P. Bertsekas


## Classical Examples

- Shortest Path Problems (Bryson figure 4.2.1) - classic robot navigation and/or aircraft flight path problems


Figure by MIT OpenCourseWare.

- Goal is to travel from $A$ to $B$ in the shortest time possible
- Travel times for each leg are shown in the figure
- There are 20 options to get from $A$ to $B$ - could evaluate each and compute travel time, but that would be pretty tedious
- Alternative approach: Start at $B$ and work backwards, invoking the principle of optimality along the way.
- First step backward can be either up (10) or down (11)


Figure by MIT OpenCourseWare.

- Consider the travel time from point $x$
- Can go up and then down $6+10=16$
- Or can go down and then up $7+11=18$
- Clearly best option from $x$ is go up, then down, with a time of 16
- From principle of optimality, this is best way to get to $B$ for any path that passes through $x$.
- Repeat process for all other points, until finally get to initial point $\Rightarrow$ shortest path traced by moving in the directions of the arrows.


Figure by MIT OpenCourseWare.

- Key advantage is that only had to find 15 numbers to solve this problem this way rather than evaluate the travel time for 20 paths
- Modest difference here, but scales up for larger problems.
- If $n=$ number of segments on side ( 3 here) then:
$\diamond$ Number of routes scales as $\sim(2 n)!/(n!)^{2}$
$\diamond$ Number DP computations scales as $\sim(n+1)^{2}-1$
- Routing Problem [Kirk, page 56] through a street maze


Figure by MIT OpenCourseWare.

- Similar problem (minimize cost to travel from $c$ to $h$ ) with a slightly more complex layout
- Once again, start at end (h) and work backwards
- Can get to $h$ from $e, g$ directly, but there are 2 paths to $h$ from $e$.
- Basics: $J_{g h}^{\star}=2$, and

$$
J_{f h}^{\star}=J_{f g}+J_{g h}^{\star}=5
$$

- Optimal cost from $e$ to $h$ given by

$$
\begin{aligned}
J_{e h}^{\star} & =\min \left\{J_{e f g h}, J_{e h}\right\}=\min \left\{\left[J_{e f}+J_{f h}^{\star}\right], J_{e h}\right\} \\
& =\min \{2+5,8\}=7 \quad e \rightarrow f \rightarrow g \rightarrow h
\end{aligned}
$$

- Also $J_{d h}^{\star}=J_{d e}^{\star}+J_{e h}^{\star}=10$
- Principle of optimality tells that, since we already know the best way to $h$ from $e$, do not need to reconsider the various options from $e$ again when starting at $d$ - just use the best.
- Optimal cost from $c$ to $h$ given by

$$
\begin{aligned}
J_{c h}^{\star} & =\min \left\{J_{c d h}, J_{c f h}\right\}=\min \left\{\left[J_{c d}+J_{d h}^{\star}\right],\left[J_{c f}+J_{f h}^{\star}\right]\right\} \\
& =\min \{[5+10],[3+5]\}=8 \quad c \rightarrow f \rightarrow g \rightarrow h
\end{aligned}
$$

- Examples show the basis of dynamic programming and use of principle of optimality.
- In general, if there are numerous options at location $\alpha$ that next lead to locations $x_{1}, \ldots, x_{n}$, choose the action that leads to

$$
J_{\alpha h}^{\star}=\min _{x_{i}}\left\{\left[J_{\alpha x_{1}}+J_{x_{1} h}^{\star}\right],\left[J_{\alpha x_{2}}+J_{x_{2} h}^{\star}\right], \ldots,\left[J_{\alpha x_{n}}+J_{x_{n} h}^{\star}\right]\right\}
$$

- Can apply the same process to more general control problems. Typically have to assume something about the system state (and possible control inputs), e.g., bounded, but also discretized.


## Roadmap:

- Grid the time/state and quantized control inputs.
- Time/state grid, evaluate necessary control
- Discrete time problem $\Rightarrow$ discrete LQR
- Continuous time problem $\Rightarrow$ calculus of variations $\Rightarrow$ cts LQR


Figure 3.1: Classic picture of discrete time/quantized space grid with the linkages possible through the control commands. Again, it is hard to evaluate all options moving forward through the grid, but we can work backwards and use the principle of optimality to reduce this load.

## Classic Control Problem

- Consider the problem of minimizing:

$$
\left.\min J=h\left(x\left(t_{f}\right)\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t
$$

subject to

$$
\begin{aligned}
\dot{x} & =a(x, u, t) \\
x\left(t_{0}\right) & =\text { fixed } \\
t_{f} & =\text { fixed }
\end{aligned}
$$

- Other constraints on $x(t)$ and $u(t)$ can also be included.
- Step 1 of solution approach is to develop a grid over space/time.
- Then look at possible final states $x_{i}\left(t_{f}\right)$ and evaluate final costs
- For example, can discretize the state into 5 possible cases $x^{1}, \ldots, x^{5}$

$$
J_{i}^{\star}=h\left(x_{t_{f}}^{i}\right), \forall i
$$




- Step 2: back up 1 step in time and consider all possible ways of completing the problem.
- To evaluate the cost of a control action, must approximate the integral in the cost.
- Consider the scenario where you are at state $x^{i}$ at time $t_{k}$, and apply control $u_{k}^{i j}$ to move to state $x^{j}$ at time $t_{k+1}=t_{k}+\Delta t$.
- Approximate cost is

$$
\left.\int_{t_{k}}^{t_{k+1}} g(x(t), u(t), t)\right) d t \approx g\left(x_{k}^{i}, u_{k}^{i j}, t_{k}\right) \Delta t
$$

- Can solve for control inputs directly from system model:

$$
x_{k+1}^{j} \approx x_{k}^{i}+a\left(x_{k}^{i}, u_{k}^{i j}, t_{k}\right) \Delta t \Rightarrow a\left(x_{k}^{i}, u_{k}^{i j}, t_{k}\right)=\frac{x_{k+1}^{j}-x_{k}^{i}}{\Delta t}
$$

which can be solved to find $u_{k}^{i j}$.

- Process is especially simple if the control inputs are affine:

$$
\dot{x}=f(x, t)+q(x, t) u
$$

which gives

$$
u_{k}^{i j}=q\left(x_{k}^{i}, t_{k}\right)^{-1}\left[\frac{x_{k+1}^{j}-x_{k}^{i}}{\Delta t}-f\left(x_{k}^{i}, t_{k}\right)\right]
$$

- So for any combination of $x_{k}^{i}$ and $x_{k+1}^{j}$ can evaluate the incremental cost $\Delta J\left(x_{k}^{i}, x_{k+1}^{j}\right)$ of making this state transition
- Assuming already know the optimal path from each new terminal point $\left(x_{k+1}^{j}\right)$, can establish optimal path to take from $x_{k}^{i}$ using

$$
J^{\star}\left(x_{k}^{i}, t_{k}\right)=\min _{x_{k+1}^{j}}\left[\Delta J\left(x_{k}^{i}, x_{k+1}^{j}\right)+J^{\star}\left(x_{k+1}^{j}\right)\right]
$$

- Then for each $x_{k}^{i}$, output is:
$\diamond$ Best $x_{k+1}^{i}$ to pick, because it gives lowest cost
$\diamond$ Control input required to achieve this best cost.
- Then work backwards in time until you reach $x_{t_{0}}$, when only one value of $x$ is allowed because of the given initial condition.


## Other Considerations

- With bounds on the control, then certain state transitions might not be allowed from 1 time-step to the next.
- With constraints on the state, certain values of $x(t)$ might not be allowed at certain times $t$.

- Extends to free end time problems, where

$$
\left.\min J=h\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} g(x(t), u(t), t)\right) d t
$$

with some additional constraint on the final state $m\left(x\left(t_{f}\right), t_{f}\right)=0$.


- Gives group of points that (approximately) satisfy the terminal constraint
- Can evaluate cost for each, and work backwards from there.
- Process extends to higher dimensional problems where the state is a vector.
- Just have to define a grid of points in $\mathbf{x}$ and $t$, which for two dimensions would look like:


Figure by MIT OpenCourseWare.
Figure 3.2: At any time $t_{k}$, have a two dimensional array of grid points.

- Previous formulation picked $x$ 's and used those to determine the $u$ 's.
- For more general problems, might be better off picking the $u$ 's and using those to determine the propagated $x$ 's

$$
\begin{aligned}
J^{\star}\left(x_{k}^{i}, t_{k}\right) & =\min _{u_{k}^{i j}}\left[\Delta J\left(x_{k}^{i}, u_{k}^{i j}\right)+J^{\star}\left(x_{k+1}^{j}, t_{k+1}\right)\right] \\
& =\min _{u_{k}^{i j}}\left[g\left(x_{k}^{i}, u_{k}^{i j}, t_{k}\right) \Delta t+J^{\star}\left(x_{k+1}^{j}, t_{k+1}\right)\right]
\end{aligned}
$$

- To do this, must quantize the control inputs as well.
- But then likely that terminal points from one time step to the next will not lie on the state discrete points $\Rightarrow$ must interpolate the cost to go between them.
- Option 1: find the control that moves the state from a point on one grid to a point on another.
- Option 2: quantize the control inputs, and then evaluate the resulting state for all possible inputs

$$
\mathbf{x}_{k+1}^{j}=\mathbf{x}_{k}^{i}+\mathbf{a}\left(\mathbf{x}_{k}^{i}, \mathbf{u}_{k}^{i j}, t_{k}\right) \Delta t
$$

- Issue at that point is that $\mathbf{x}_{k+1}^{j}$ probably will not agree with the $t_{k+1}$ grid points $\Rightarrow$ must interpolate the available $J^{\star}$.
- See, for example, R.E.Larson "A survey of dynamic programming computational procedures", IEEE TAC Dec 1967 (on web) or section 3.6 in Kirk.

- Do this for all admissible $\mathbf{u}_{k}^{i j}$ and resulting $\mathbf{x}_{k+1}^{j}$, and then take

$$
J^{\star}\left(\mathbf{x}_{k}^{i}, t_{k}\right)=\min _{\mathbf{u}_{k}^{i j}} J\left(\mathbf{x}_{k}^{i}, \mathbf{u}_{k}^{i j}, t_{k}\right)
$$

- Main problem with dynamic programming is how badly it scales.
- Given $N_{t}$ points in time and $N_{x}$ quantized states of dimension $n$
- Number of points to consider is $N=N_{t} N_{x}^{n}$
$\Rightarrow$ "Curse of Dimensionality" - R. Bellman, Dynamic Programming (1957) - now from Dover.
- See Kirk pg.59:

$$
J=x^{2}(T)+\lambda \int_{0}^{T} u^{2}(t) d t
$$

with $\dot{x}=a x+u$, where $0 \leq x \leq 1.5$ and $-1 \leq u \leq 1$

- Must quantize the state within the allowable values and time within the range $t \in[0,2]$ using $N=2, \Delta t=T / N=1$.
- Approximate the continuous system as:

$$
\dot{x} \approx \frac{x(t+\Delta t)-x(t)}{\Delta t}=a x(t)+u(t)
$$

which gives that

$$
x_{k+1}=(1+a \Delta t) x_{k}+(\Delta t) u_{k}
$$

- Very common discretization process (Euler integration approximation) that works well if $\Delta t$ is small
- Use approximate calculation from previous section - cost becomes

$$
J=x^{2}(T)+\lambda \sum_{k=0}^{N-1} u_{k}^{2} \Delta t
$$

- Take $\lambda=2$ and $a=0$ to simplify things a bit.
- With $0 \leq x(k) \leq 1.5$, take $x$ quantized into four possible values $x_{k} \in\{0,0.5,1.0,1.5\}$
- With control bounded $|u(k)| \leq 1$, assume it is quantized into five possible values: $u_{k} \in\{-1,-0.5,0,0.5,1\}$
- Start - evaluate cost associated with all possible terminal states

| $x_{2}^{j}$ | $J_{2}^{\star}=h\left(x_{2}^{j}\right)=\left(x_{2}^{j}\right)^{2}$ |
| :---: | :---: |
| 0 | 0 |
| 0.5 | 0.25 |
| 1 | 1 |
| 1.5 | 2.25 |

- Given $x_{1}$ and possible $x_{2}$, can evaluate the control effort required to make that transition:

| $u(1)$ | $x_{2}^{j}=x_{1}^{i}+u(1)$ |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| $x_{1}^{i}$ | $\mathbf{0}$ | $\mathbf{0 . 5}$ | $\mathbf{1}$ | $\mathbf{1 . 5}$ |
| $\mathbf{0}$ | 0 | 0.5 | 1 | $\mathbf{1 . 5}$ |
| $\mathbf{0 . 5}$ | -0.5 | 0 | 0.5 | 1 |
| $\mathbf{1}$ | -1 | -0.5 | 0 | 0.5 |
| $\mathbf{1 . 5}$ | $\mathbf{- 1 . 5}$ | -1 | -0.5 | 0 |

which can be used to compute the cost increments:

| $\Delta J_{12}^{i j}$ | $x_{2}^{j}$ |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| $x_{1}^{i}$ | $\mathbf{0}$ | $\mathbf{0 . 5}$ | $\mathbf{1}$ | $\mathbf{1 . 5}$ |
| $\mathbf{0}$ | 0 | 0.5 | 2 | XX |
| $\mathbf{0 . 5}$ | 0.5 | 0 | 0.5 | 2 |
| $\mathbf{1}$ | 2 | 0.5 | 0 | 0.5 |
| $\mathbf{1 . 5}$ | XX | 2 | 0.5 | 0 |

and costs at time $t=1$ given by $J_{1}=\Delta J_{12}^{i j}+J_{2}^{\star}\left(x_{2}^{j}\right)$

| $J_{1}$ | $x_{2}^{j}$ |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| $x_{1}^{i}$ | $\mathbf{0}$ | $\mathbf{0 . 5}$ | $\mathbf{1}$ | $\mathbf{1 . 5}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | 0.75 | 3 | XX |
| $\mathbf{0 . 5}$ | 0.5 | $\mathbf{0 . 2 5}$ | 1.5 | 4.25 |
| $\mathbf{1}$ | 2 | $\mathbf{0 . 7 5}$ | 1 | 2.75 |
| $\mathbf{1 . 5}$ | XX | 2.25 | $\mathbf{1 . 5}$ | 2.25 |

- Take min across each row to determine best action at each possible $x_{1} \Rightarrow J_{1}^{\star}\left(x_{1}^{j}\right)$

$$
\begin{aligned}
x_{1}^{i} & \rightarrow x_{2}^{j} \\
\hline 0 & \rightarrow 0 \\
0.5 & \rightarrow 0.5 \\
1 & \rightarrow 0.5 \\
1.5 & \rightarrow 1
\end{aligned}
$$

- Can repeat the process to find the costs at time $t=0$ which are $J_{0}=\Delta J_{01}^{i j}+J_{1}^{\star}\left(x_{1}^{j}\right)$

| $J_{0}$ | $x_{1}^{j}$ |  |  |  |
| ---: | :---: | :---: | :---: | :---: |
| $x_{0}^{i}$ | $\mathbf{0}$ | $\mathbf{0 . 5}$ | $\mathbf{1}$ | $\mathbf{1 . 5}$ |
| $\mathbf{0}$ | $\mathbf{0}$ | 0.75 | 2.75 | XX |
| $\mathbf{0 . 5}$ | 0.5 | $\mathbf{0 . 2 5}$ | 1.25 | 3.5 |
| $\mathbf{1}$ | 2 | $\mathbf{0 . 7 5}$ | 0.75 | 2 |
| $\mathbf{1 . 5}$ | XX | 2.25 | $\mathbf{1 . 2 5}$ | 1.5 |

and again, taking min across the rows gives the best actions:

$$
\begin{aligned}
x_{0}^{i} & \rightarrow x_{1}^{j} \\
\hline 0 & \rightarrow 0 \\
0.5 & \rightarrow 0.5 \\
1 & \rightarrow 0.5 \\
1.5 & \rightarrow 1
\end{aligned}
$$

- So now we have a complete strategy for how to get from any $x_{0}^{i}$ to the best $x_{2}$ to minimize the cost
- This process can be highly automated, and this clumsy presentation is typically not needed.


## Discrete LQR

- For most cases, dynamic programming must be solved numerically often quite challenging.
- A few cases can be solved analytically - discrete LQR (linear quadratic regulator) is one of them
- Goal: select control inputs to minimize

$$
J=\frac{1}{2} \mathbf{x}_{N}^{T} H \mathbf{x}_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left[\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k}+\mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k}\right]
$$

so that

$$
g_{d}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right)=\frac{1}{2}\left(\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k}+\mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k}\right)
$$

subject to the dynamics

$$
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+B_{k} \mathbf{u}_{k}
$$

- Assume that $H=H^{T} \geq 0, Q=Q^{T} \geq 0$, and $R=R^{T}>0$
- Including any other constraints greatly complicates problem
- Clearly $J_{N}^{\star}\left[\mathbf{x}_{N}\right]=\frac{1}{2} \mathbf{x}_{N}^{T} H \mathbf{x}_{N} \Rightarrow$ now need to find $J_{N-1}^{\star}\left[\mathbf{x}_{N-1}\right]$

$$
\begin{aligned}
J_{N-1}^{\star}\left[\mathbf{x}_{N-1}\right] & =\min _{\mathbf{u}_{N-1}}\left\{g_{d}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right)+J_{N}^{\star}\left[\mathbf{x}_{N}\right]\right\} \\
& \left.=\min _{\mathbf{u}_{N-1}} \frac{1}{2}\left\{\mathbf{x}_{N-1}^{T} Q_{N-1} \mathbf{x}_{N-1}+\mathbf{u}_{N-1}^{T} R_{N-1} \mathbf{u}_{N-1}+\mathbf{x}_{N}^{T} H \mathbf{x}_{N}\right]\right\}
\end{aligned}
$$

- Note that $\mathbf{x}_{N}=A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}$, so that

$$
\begin{aligned}
& J_{N-1}^{\star}\left[\mathbf{x}_{N-1}\right]=\min _{\mathbf{u}_{N-1}} \frac{1}{2}\left\{\mathbf{x}_{N-1}^{T} Q_{N-1} \mathbf{x}_{N-1}+\mathbf{u}_{N-1}^{T} R_{N-1} \mathbf{u}_{N-1}\right. \\
& \left.+\left\{A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right\}^{T} H\left\{A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right\}\right\}
\end{aligned}
$$

- Take derivative with respect to the control inputs

$$
\frac{\partial J_{N-1}^{\star}\left[\mathbf{x}_{N-1}\right]}{\partial \mathbf{u}_{N-1}}=\mathbf{u}_{N-1}^{T} R_{N-1}+\left\{A_{N-1} \mathbf{x}_{N-1}+B_{N-1} \mathbf{u}_{N-1}\right\}^{T} H B_{N-1}
$$

- Take transpose and set equal to 0 , yields

$$
\left[R_{N-1}+B_{N-1}^{T} H B_{N-1}\right] \mathbf{u}_{N-1}+B_{N-1}^{T} H A_{N-1} \mathbf{x}_{N-1}=0
$$

- Which suggests a couple of key things:
- The best control action at time $N-1$, is a linear state feedback on the state at time $N-1$ :

$$
\begin{aligned}
\mathbf{u}_{N-1}^{\star} & =-\left[R_{N-1}+B_{N-1}^{T} H B_{N-1}\right]^{-1} B_{N-1}^{T} H A_{N-1} \mathbf{x}_{N-1} \\
& \equiv-F_{N-1} \mathbf{x}_{N-1}
\end{aligned}
$$

- Furthermore, can show that

$$
\frac{\partial^{2} J_{N-1}^{\star}\left[\mathbf{x}_{N-1}\right]}{\partial \mathbf{u}_{N-1}^{2}}=R_{N-1}+B_{N-1}^{T} H B_{N-1}>0
$$

so that the stationary point is a minimum

- With this control decision, take another look at

$$
\begin{aligned}
J_{N-1}^{\star}\left[\mathbf{x}_{N-1}\right]= & \frac{1}{2} \mathbf{x}_{N-1}^{T}\left\{Q_{N-1}+F_{N-1}^{T} R_{N-1} F_{N-1}+\right. \\
& \left.\left\{A_{N-1}-B_{N-1} F_{N-1}\right\}^{T} H\left\{A_{N-1}-B_{N-1} F_{N-1}\right\}\right\} \mathbf{x}_{N-1} \\
\equiv & \frac{1}{2} \mathbf{x}_{N-1}^{T} P_{N-1} \mathbf{x}_{N-1}
\end{aligned}
$$

- Note that $P_{N}=H$, which suggests a convenient form for gain $F$ :

$$
\begin{equation*}
F_{N-1}=\left[R_{N-1}+B_{N-1}^{T} P_{N} B_{N-1}\right]^{-1} B_{N-1}^{T} P_{N} A_{N-1} \tag{3.20}
\end{equation*}
$$

- Now can continue using induction - assume that at time $k$ the control will be of the form $\mathbf{u}_{k}^{\star}=-F_{k} \mathbf{x}_{k}$ where

$$
F_{k}=\left[R_{k}+B_{k}^{T} P_{k+1} B_{k}\right]^{-1} B_{k}^{T} P_{k+1} A_{k}
$$

and $J_{k}^{\star}\left[\mathbf{x}_{k}\right]=\frac{1}{2} \mathbf{x}_{k}^{T} P_{k} \mathbf{x}_{k}$ where

$$
P_{k}=Q_{k}+F_{k}^{T} R_{k} F_{k}+\left\{A_{k}-B_{k} F_{k}\right\}^{T} P_{k+1}\left\{A_{k}-B_{k} F_{k}\right\}
$$

- Recall that both equations are solved backwards from $k+1$ to $k$.
- Now consider time $k-1$, with

$$
J_{k-1}^{\star}\left[\mathbf{x}_{k-1}\right]=\min _{\mathbf{u}_{k-1}}\left\{\frac{1}{2} \mathbf{x}_{k-1}^{T} Q_{k-1} \mathbf{x}_{k-1}+\mathbf{u}_{k-1}^{T} R_{k-1} \mathbf{u}_{k-1}+J_{k}^{\star}\left[\mathbf{x}_{k}\right]\right\}
$$

- Taking derivative with respect to $\mathbf{u}_{k-1}$ gives,

$$
\frac{\partial J_{k-1}^{\star}\left[\mathbf{x}_{k-1}\right]}{\partial \mathbf{u}_{k-1}}=\mathbf{u}_{k-1}^{T} R_{k-1}+\left\{A_{k-1} \mathbf{x}_{k-1}+B_{k-1} \mathbf{u}_{k-1}\right\}^{T} P_{k} B_{k-1}
$$

so that the best control input is

$$
\begin{aligned}
\mathbf{u}_{k-1}^{\star} & =-\left[R_{k-1}+B_{k-1}^{T} P_{k} B_{k-1}\right]^{-1} B_{k-1}^{T} P_{k} A_{k-1} \mathbf{x}_{k-1} \\
& =-F_{k-1} \mathbf{x}_{k-1}
\end{aligned}
$$

- Substitute this control into the expression for $J_{k-1}^{\star}\left[\mathbf{x}_{k-1}\right]$ to show that

$$
J_{k-1}^{\star}\left[\mathbf{x}_{k-1}\right]=\frac{1}{2} \mathbf{x}_{k-1}^{T} P_{k-1} \mathbf{x}_{k-1}
$$

and

$$
\begin{aligned}
P_{k-1}= & Q_{k-1}+F_{k-1}^{T} R_{k-1} F_{k-1}+ \\
& \left\{A_{k-1}-B_{k-1} F_{k-1}\right\}^{T} P_{k}\left\{A_{k-1}-B_{k-1} F_{k-1}\right\}
\end{aligned}
$$

- Thus the same properties hold at time $k-1$ and $k$, and $N$ and $N-1$ in particular, so they will always be true.


## Algorithm

- Can summarize the above in the algorithm:
(i) $\quad P_{N}=H$
(ii) $\quad F_{k}=\left[R_{k}+B_{k}^{T} P_{k+1} B_{k}\right]^{-1} B_{k}^{T} P_{k+1} A_{k}$
(iii) $P_{k}=Q_{k}+F_{k}^{T} R_{k} F_{k}+\left\{A_{k}-B_{k} F_{k}\right\}^{T} P_{k+1}\left\{A_{k}-B_{k} F_{k}\right\}$
cycle through steps (ii) and (iii) from $N-1 \rightarrow 0$.
- Notes:
- The result is a control schedule that is time varying, even if $A, B$, $Q$, and $R$ are constant.
- Clear that $P_{k}$ and $F_{k}$ are independent of the state and can be computed ahead of time, off-line.
- Possible to eliminate the $F_{k}$ part of the cycle, and just cycle through $P_{k}$
$P_{k}=Q_{k}+A_{k}^{T}\left\{P_{k+1}-P_{k+1} B_{k}\left[R_{k}+B_{k}^{T} P_{k+1} B_{k}\right]^{-1} B_{k}^{T} P_{k+1}\right\} A_{k}$
- Initial assumption $R_{k}>0 \forall k$ can be relaxed, but we must ensure that $\left[R_{k+1}+B_{k}^{T} Q_{k+1} B_{k}\right]>0 .{ }^{2}$
- In the expression:

$$
J^{\star}\left(x_{k}^{i}, t_{k}\right)=\min _{u_{k}^{i j}}\left[g\left(x_{k}^{i}, u_{k}^{i j}, t_{k}\right) \Delta t+J^{\star}\left(x_{k+1}^{j}, t_{k+1}\right)\right]
$$

the term $J^{\star}\left(x_{k+1}^{j}, t_{k+1}\right)$ plays the role of a "cost-to-go", which is a key concept in DP and other control problems.

- The optimal initial cost is $J_{0}^{\star}\left[\mathbf{x}_{0}\right]=\frac{1}{2} \mathbf{x}_{0}^{T} P_{0} \mathbf{x}_{0}$. One question: how would the cost of a different controller strategy compare?

$$
\mathbf{u}_{k}=-G_{k} \mathbf{x}_{k}
$$

- Can substitute this controller into the cost function and compute

$$
\begin{aligned}
J & =\frac{1}{2} \mathbf{x}_{N}^{T} H \mathbf{x}_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left[\mathbf{x}_{k}^{T} Q_{k} \mathbf{x}_{k}+\mathbf{u}_{k}^{T} R_{k} \mathbf{u}_{k}\right] \\
\Rightarrow J_{G} & =\frac{1}{2} \mathbf{x}_{N}^{T} H \mathbf{x}_{N}+\frac{1}{2} \sum_{k=0}^{N-1} \mathbf{x}_{k}^{T}\left[Q_{k}+G_{k}^{T} R_{k} G_{k}\right] \mathbf{x}_{k}
\end{aligned}
$$

where

$$
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+B_{k} \mathbf{u}_{k}=\left(A_{k}-B_{k} G_{k}\right) \mathbf{x}_{k}
$$

- Note that:

$$
\frac{1}{2} \sum_{k=0}^{N-1}\left[\mathbf{x}_{k+1}^{T} S_{k+1} \mathbf{x}_{k+1}-\mathbf{x}_{k}^{T} S_{k} \mathbf{x}_{k}\right]=\frac{1}{2}\left[\mathbf{x}_{N}^{T} S_{N} \mathbf{x}_{N}-\mathbf{x}_{0}^{T} S_{0} \mathbf{x}_{0}\right]
$$

- So can rearrange the cost function as

$$
\begin{aligned}
J_{G} & =\frac{1}{2} \mathbf{x}_{N}^{T} H \mathbf{x}_{N}+\frac{1}{2} \sum_{k=0}^{N-1}\left\{\mathbf{x}_{k}^{T}\left[Q_{k}+G_{k}^{T} R_{k} G_{k}-S_{k}\right] \mathbf{x}_{k}\right. \\
& \left.+\mathbf{x}_{k+1}^{T} S_{k+1} \mathbf{x}_{k+1}\right\}-\frac{1}{2}\left[\mathbf{x}_{N}^{T} S_{N} \mathbf{x}_{N}-\mathbf{x}_{0}^{T} S_{0} \mathbf{x}_{0}\right]
\end{aligned}
$$

- Now substitute for $\mathbf{x}_{k+1}=\left(A_{k}-B_{k} G_{k}\right) \mathbf{x}_{k}$, and define $S_{k}$ so that

$$
\begin{aligned}
S_{N} & =H \\
S_{k} & =Q_{k}+G_{k}^{T} R_{k} G_{k}+\left\{A_{k}-B_{k} G_{k}\right\}^{T} S_{k+1}\left\{A_{k}-B_{k} G_{k}\right\}
\end{aligned}
$$

which is another recursion, that gives

$$
J_{G}=\frac{1}{2} \mathbf{x}_{0}^{T} S_{0} \mathbf{x}_{0}
$$

- So that for a given $\mathbf{x}_{0}$, we can compare $P_{0}$ and $S_{0}$ to evaluate the extent to which the controller is suboptimal.


## Steady State

- Assume ${ }^{3}$
- Time invariant problem (LTI) - i.e., $A, B, Q, R$ are constant
- System $[A, B]$ stabilizable - uncontrollable modes are stable.
- For any $H$, then as $N \rightarrow \infty$, the recursion for $P$ tends to a constant solution with $P_{s s} \geq 0$ that is bounded and satisfies (set $P_{k} \equiv P_{k+1}$ )

$$
\begin{equation*}
P_{s s}=Q+A^{T}\left\{P_{s s}-P_{s s} B\left[R+B^{T} P_{s s} B\right]^{-1} B^{T} P_{s s}\right\} A \tag{3.21}
\end{equation*}
$$

- Discrete form of the famous Algebraic Riccati Equation
- Typically hard to solve analytically, but easy to solve numerically.
- Can be many PSD solutions of (3.21), recursive solution will be one.
- Let $Q=C^{T} C \geq 0$, which is equivalent to having cost measurements $\mathbf{z}=C \mathbf{x}$ and state penalty $\mathbf{z}^{T} \mathbf{z}=\mathbf{x}^{T} C^{T} C \mathbf{x}=\mathbf{x}^{T} Q \mathbf{x}$. If $[A, C]$ detectable, then:
- Independent of $H$, recursion for $P$ has a unique steady state solution $P_{s s} \geq 0$ that is the unique PSD solution of (3.21).
- The associated steady state gain is

$$
F_{s s}=\left[R+B^{T} P_{s s} B\right]^{-1} B^{T} P_{s s} A
$$

and using $F_{s s}$, the closed-loop system $\mathbf{x}_{k+1}=\left(A-B F_{s s}\right) \mathbf{x}_{k}$ is asymptotically stable, i.e.,

$$
\left|\lambda\left(A-B F_{s s}\right)\right|<1
$$

- Detectability required to ensure that all unstable modes penalized in state cost.
- If, in addition, $[A, C]$ observable ${ }^{4}$, then there is a unique $P_{s s}>0$

[^0]- Integrator scalar system $\dot{x}=u$, which gives

$$
x_{k+1}=x_{k}+u_{k} \Delta t
$$

so that $A=1, B=\Delta t=1$ and

$$
J=\frac{1}{4} x(N)^{2}+\frac{1}{2} \sum_{k=0}^{N-1}\left[x_{k}^{2}+u_{k}^{2}\right]
$$

so that $N=10, Q=R=1, H=1 / 2$ (numbers in code/figures might differ)

- Note that this is a discrete system, and the rules for stability are different - need $\left|\lambda_{i}(A-B F)\right|<1$.
- Open loop system is marginally stable, and a gain $1>F>0$ will stabilize the system.


Figure 3.3: discrete LQR comparison to constant gain, $G=-0.25$

- Plot shows discrete LQR results: clear that the $P_{k}$ settles to a constant value very quickly
- Rate of reaching steady state depends on $Q / R$. For $Q / R$ large reaches steady state quickly
- (Very) Suboptimal $F$ gives an obviously worse cost
- But a reasonable choice of a constant $F$ in this case gives nearly optimal results.


Figure 3.4: discrete LQR comparison to constant gain, $G=F(0)$


Figure 3.5: State response comparison

- State response consistent


## Gain Insights

- Note that from Eq. 3.20 we know that

$$
F_{N-1}=\left[R_{N-1}+B_{N-1}^{T} P_{N} B_{N-1}\right]^{-1} B_{N-1}^{T} P_{N} A_{N-1}
$$

which for the scalar case reduces to

$$
F_{N-1}=\frac{B_{N-1} P_{N} A_{N-1}}{R_{N-1}+B_{N-1}^{2} P_{N}}
$$

- So if there is a high weighting on the terminal state, then $H \rightarrow \infty$ and $P_{N}$ is large. Thus

$$
F_{N-1} \rightarrow \frac{B_{N-1} P_{N} A_{N-1}}{B_{N-1}^{2} P_{N}} \rightarrow \frac{A}{B}
$$

and

$$
x_{N}=(A-B F) x_{N-1}=\left(A-B \frac{A}{B}\right) x_{N-1}=0
$$

regardless of the value of $x_{N-1}$. This is a nilpotent controller.

- If control penalty set very small, so that $R \rightarrow 0(Q / R$ large $)$, then

$$
F_{N-1} \rightarrow \frac{B_{N-1} P_{N} A_{N-1}}{B_{N-1}^{2} P_{N}} \rightarrow \frac{A}{B}
$$

and $x_{N}=0$ as well.

- State penalized, but control isn't, so controller will exert as much effort as necessary to make $x$ small.
- In fact, this will typically make $x(1)=0$ regardless of $x(0)$ if there are no limits on the control effort.


## Discrete scalar LQR

```
% 16.323 Spring 2008
% Jonathan How
% integ.m: integrator system
%
clear all
close all
%A=1;B=1;Q=1;R=1;H=0.5;N=5;
A=1;B=1;Q=1;R=2;H=.25;N=10;
P(N+1)=H; % shift indices to avoid index of 0
for j=N-1:-1:0
    i=j+1; % shift indices to avoid index of 0
    F}(\textrm{i})=inv(\textrm{R}+\textrm{B}'*P(\textrm{P}+1)*\textrm{B})*\textrm{B}'*P(\textrm{P}+1)*\textrm{A}
    P(i)=(A-B*F(i))'*P(i+1)*(A-B*F(i))+F(i)'*R*F(i)+Q;
end
% what if we used a fixed gain of F(0), which stabilizes
S(N+1)=H; % shift indices to avoid index of 0
for j=N-1:-1:0
    i=j+1; % shift indices to avoid index of 0
    G(i)=F(1);
    S(i)=(A-B*G(i))'*S(i+1)*(A-B*G(i))+G(i)'*R*G(i)+Q;
end
time=[0:1:N];
figure(1);clf
plot(time, P,'ks','MarkerSize', 12,'MarkerFaceColor','k')
hold on
plot(time,S,'rd','MarkerSize',12,'MarkerFaceColor','r')
plot(time(1:N),F,'bo','MarkerSize', 12,'MarkerFaceColor','b')
hold off
legend('Optimal P','Suboptimal S with G=F(0)','Optimal F','Location','SouthWest')
xlabel('Time')
ylabel('P/S/F')
text(2,1,['S(0)-P(0) = ',num2str(S(1)-P(1))])
axis([-.1 N -1 max(max(P),max(S))+.5] )
print -dpng -r300 integ.png
% what if we used a fixed gain of G=0.25, which stabilizes
S(N+1)=H; % shift indices to avoid index of 0
for j=N-1:-1:0
    i=j+1; % shift indices to avoid index of 0
    G(i)=.25;
    S(i)=(A-B*G(i))'*S(i+1)*(A-B*G(i))+G(i)'*R*G(i)+Q;
end
figure(2)
%plot(time,P,'ks',time,S,'rd',time(1:N),F,'bo','MarkerSize', 12)
plot(time,P,'ks','MarkerSize',12,'MarkerFaceColor','k')
hold on
plot(time,S,'rd','MarkerSize',12,'MarkerFaceColor','r')
plot(time(1:N),F,'bo','MarkerSize',12,'MarkerFaceColor','b')
hold off
legend('Optimal P','Suboptimal S with G=0.25','Optimal F','Location','SouthWest')
text(2,1,['S(0)-P(0) = ',num2str(S(1)-P(1))])
axis([-.1 N -1 max(max(P),max(S))+.5] )
ylabel('P/S/F')
xlabel('Time')
print -dpng -r300 integ2
% state response
x0=1;xo=x0;xs1=x0;xs2=x0;
for j=0:N-1;
    k=j+1;
    xo(k+1)=(A-B*F(k))*xo(k);
    xs1(k+1)=(A-B*F(1))*xs1(k);
```

```
    xs2(k+1)=(A-B*G(1))*xs2(k)
end
figure(3)
plot(time,xo,'bo','MarkerSize',12,'MarkerFaceColor','b')
hold on
plot(time,xs1,'ks','MarkerSize',9,'MarkerFaceColor','k')
plot(time,xs2,'rd','MarkerSize',12,'MarkerFaceColor','r')
hold off
legend('Optimal','Suboptimal with G=F(0)','Suboptimal with G=0.25','Location','North')
%axis([-.1 5 -1 3] )
ylabel('x(t)')
xlabel('Time')
print -dpng -r300 integ3.png;
```

- Def: LTI system is controllable if, for every $\mathbf{x}^{\star}(t)$ and every finite $T>0$, there exists an input function $\mathbf{u}(t), 0<t \leq T$, such that the system state goes from $\mathbf{x}(0)=0$ to $\mathbf{x}(T)=\mathbf{x}^{\star}$.
- Starting at 0 is not a special case - if we can get to any state in finite time from the origin, then we can get from any initial condition to that state in finite time as well.
- Thm: LTI system is controllable iff it has no uncontrollable states. - Necessary and sufficient condition for controllability is that

$$
\operatorname{rank} \mathcal{M}_{c} \triangleq \operatorname{rank}\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right]=n
$$

- Def: LTI system is observable if the initial state $\mathbf{x}(0)$ can be uniquely deduced from the knowledge of the input $\mathbf{u}(t)$ and output $\mathbf{y}(t)$ for all $t$ between 0 and any finite $T>0$.
- If $\mathbf{x}(0)$ can be deduced, then we can reconstruct $\mathbf{x}(t)$ exactly because we know $\mathbf{u}(t) \Rightarrow$ we can find $\mathbf{x}(t) \forall t$.
- Thm: LTI system is observable iff it has no unobservable states.
- We normally just say that the pair $(A, C)$ is observable.
- Necessary and sufficient condition for observability is that

$$
\operatorname{rank} \mathcal{M}_{o} \triangleq \operatorname{rank}\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{n-1}
\end{array}\right]=n
$$

[^1]
[^0]:    ${ }^{3}$ See Lewis and Syrmos, Optimal Control, Thm 2.4-2 and Kwakernaak and Sivan, Linear Optimal Control Systems, Thm 6.31
    ${ }^{4}$ Guaranteed if $Q>0$

[^1]:    ${ }^{5}$ This controllability from the origin is often called reachability.

