
MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

16.323 Lecture 16

Model Predictive Control

•	 Allgower, F., and A. Zheng, Nonlinear Model Predictive Control, Springer-Verlag,
2000.

•	 Camacho, E., and C. Bordons, Model Predictive Control, Springer-Verlag, 1999.
•	 Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory &

Practice, IEE Publishing, 2001.
•	 Maciejowski, J., Predictive Control with Constraints, Pearson Education POD,

2002.
•	 Rossiter, J. A., Model-Based Predictive Control: A Practical Approach, CRC

Press, 2003.

Spr 2008 16.323 16–1
MPC

• Planning in Lecture 8 was effectively “open-loop”
– Designed the control input sequence u(t) using an assumed model

and set of constraints.

– Issue is that with modeling error and/or disturbances, these inputs
will not necessarily generate the desired system response.

• Need a “closed-loop” strategy to compensate for these errors.

– Approach called Model Predictive Control

– Also known as receding horizon control

• Basic strategy:
– At time k, use knowledge of the system model to design an input

sequence

u(k|k), u(k + 1|k), u(k + 2|k), u(k + 3|k), . . . , u(k + N |k)

over a finite horizon N from the current state x(k)

– Implement a fraction of that input sequence, usually just first step.

– Repeat for time k + 1 at state x(k + 1)

June 18, 2008

Reference

"Optimal" future outputs

"Optimal" future inputs

Future outputs, no control

Future inputs, no control

Old outputs

Old inputs

Past Present Future Time

MPC: basic idea (from Bo Wahlberg)

Figure by MIT OpenCourseWare.

Spr 2008	 16.323 16–2

•	 Note that the control algorithm is based on numerically solving an
optimization problem at each step
– Typically a constrained optimization

•	 Main advantage of MPC:
– Explicitly accounts for system constraints.
� Doesn’t just design a controller to keep the system away from

them.

– Can easily handle nonlinear and time-varying plant dynamics, since
the controller is explicitly a function of the model that can be mod

ified in real-time (and plan time)

•	 Many commercial applications that date back to the early 1970’s, see
http://www.che.utexas.edu/~qin/cpcv/cpcv14.html
– Much of this work was in process control - very nonlinear dynamics,

but not particularly fast.

•	 As computer speed has increased, there has been renewed interest in
applying this approach to applications with faster time-scale: trajec

tory design for aerospace systems.

June 18, 2008

Ref

Plant
P

Trajectory
Generation

Noise

u
Ref

Output

Plant
P

Trajectory
Generation

Noise
uud

xd du

Output

Feedback
Compensation

Implementation architectures for MPC (from Mark Milam)

Figure by MIT OpenCourseWare.

http://www.che.utexas.edu/~qin/cpcv/cpcv14.html

Basic Formulation

�

Spr 2008	 16.323 16–3

•	 Given a set of plant dynamics (assume linear for now)

x(k + 1) = Ax(k) + Bu(k)

z(k) = Cx(k)

and a cost function
N

J	= {�z(k + j|k)�Rzz + �u(k + j|k)�Ruu} + F (x(k + N |k))
j=0

– �z(k + j|k)�Rxx is just a short hand for a weighted norm of the
state, and to be consistent with earlier work, would take

�z(k + j|k)�Rzz = z(k + j|k)TRzzz(k + j|k)

– F (x(k + N |k)) is a terminal cost function

•	 Note that if N →∞, and there are no additional constraints on z or
u, then this is just the discrete LQR problem solved on page 3–14.

– Note that the original LQR result could have been written as just
an input control sequence (feedforward), but we choose to write
it as a linear state feedback.

– In the nominal case, there is no difference between these two im

plementation approaches (feedforward and feedback)

– But with modeling errors and disturbances, the state feedback form
is much less sensitive.

⇒ This is the main reason for using feedback.

•	 Issue: When limits on x and u are added, we can no longer find the
general solution in analytic form must solve it numerically. ⇒

June 18, 2008

�

Spr 2008	 16.323 16–4

•	 However, solving for a very long input sequence:
– Does not make sense if one expects that the model is wrong and/or

there are disturbances, because it is unlikely that the end of the
plan will be implemented (a new one will be made by then)

– Longer plans have more degrees of freedom and take much longer
to compute.

•	 Typically design using a small N ⇒ short plan that does not necessarily
achieve all of the goals.
– Classical hard question is how large should N be?

– If plan doesn’t reach the goal, then must develop an estimate of the
remaining cost-to-go

•	 Typical problem statement: for finite N (F = 0)

N

min J =	 k)�Rzz + �u(k + j k)�Ruu}u
{�z(k + j|	 |

j=0

s.t. x(k + j + 1|k) = Ax(k + j|k) + Bu(k + j|k)

x(k|k) ≡ x(k)

z(k + j|k) = Cx(k + j|k)

and |u(k + j|k)| ≤ um

June 18, 2008

Spr 2008	 16.323 16–5

• Consider converting this into a more standard optimization problem.

z(k|k) = Cx(k|k)

z(k + 1|k) = Cx(k + 1|k) = C(Ax(k|k) + Bu(k|k))

= CAx(k|k) + CBu(k|k)

z(k + 2|k) = Cx(k + 2|k)

= C(Ax(k + 1|k) + Bu(k + 1|k))

= CA(Ax(k|k) + Bu(k|k)) + CBu(k + 1|k)

= CA2 x(k|k) + CABu(k|k) + CBu(k + 1|k)
...

z(k + N |k) =	 CAN x(k|k) + CAN−1Bu(k|k) + · · ·
+CBu(k + (N − 1)|k)

• Combine these equations into the following:

⎤⎡⎤⎡
z(k k)
 C
|

z(k + 1⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

x(k k)
|

|

|

k)

k)

CA

CA2
z(k + 2

.. ...
 .
CANz(k + N |k)
⎡
 ⎤⎡

⎤
0 0 0 · · · 0
CB 0 0 0
CAB CB 0 0

u(k|k)
u(k + 1

⎢⎢⎢⎢⎢⎣

⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦
...

⎥⎥⎥⎦

|k)

+
 ...

CAN−1B CAN−2B CAN−3B CB
u(k + N − 1|k) · · ·

June 18, 2008

�

� �

Spr 2008 16.323 16–6

Now define • ⎡ ⎤ ⎡ ⎤
z(k k) u(k k)

Z(k) ≡ ⎣ ...
| ⎦ U(k) ≡ ⎣ ...

| ⎦

z(k + N |k) u(k + N − 1|k)

then, with x(k|k) = x(k)

Z(k) = Gx(k) + HU(k)

Note that •
N

z(k + j|k)TRzzz(k + j|k) = Z(k)TW1Z(k)
j=0

with an obvious definition of the weighting matrix W1

Thus •

Z(k)TW1Z(k) + U(k)TW2U(k)

= (Gx(k) + HU(k))TW1(Gx(k) + HU(k)) + U(k)TW2U(k)
1

= x(k)TH1x(k) + H2
TU(k) + U(k)TH3U(k)

2
where

H1 = GTW1G, H2 = 2(x(k)TGTW1H), H3 = 2(HTW1H + W2)

• Then the MPC problem can be written as:

min J̃ = H2
TU(k) +

1
U(k)TH3U(k)

U(k) 2

IN s.t. U(k) ≤ um −IN

June 18, 2008

Toolboxes Spr 2008	 16.323 16–7

•	 Key point: the MPC problem is now in the form of a standard
quadratic program for which standard and efficient codes exist.

QUADPROG Quadratic programming. %

X=QUADPROG(H,f,A,b) attempts to solve the %

quadratic programming problem:

min 0.5*x’*H*x + f’*x subject to: A*x <= b

x

X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem %
above while additionally satisfying the equality%
constraints Aeq*x = beq.

•	 Several Matlab toolboxes exist for testing these ideas
– MPC toolbox by Morari and Ricker – extensive analysis and design

tools.

– MPCtools 32 enables some MPC simulation and is free
www.control.lth.se/user/johan.akesson/mpctools/

32Johan Akesson: ”MPCtools 1.0 - Reference Manual”. Technical report ISRN LUTFD2/TFRT–7613–SE, Department of Auto
matic Control, Lund Institute of Technology, Sweden, January 2006.

June 18, 2008

www.control.lth.se/user/johan.akesson/mpctools/

MPC Observations

�	 �

Spr 2008	 16.323 16–8

• Current form assumes that full state is available - can hookup with an
estimator

•	 Current form assumes that we can sense and apply corresponding con

trol immediately
– With most control systems, that is usually a reasonably safe as

sumption

– Given that we must re-run the optimization, probably need to ac
count for this computational delay - different form of the discrete
model - see F&P (chapter 2)

•	 If the constraints are not active, then the solution to the QP is that

U(K) = −H−1H23

which can be written as:

u(k|k) = − 1 0 . . . 0 (HTW1H + W2)
−1HTW1Gx(k)

= −Kx(k)

which is just a state feedback controller.
– Can apply this gain to the system and check the eigenvalues.

June 18, 2008

Spr 2008	 16.323 16–9

•	 What can we say about the stability of MPC when the constraints are
active? 33

– Depends a lot on the terminal cost and the terminal constraints.34

•	 Classic result:35 Consider a MPC algorithm for a linear system with
constraints. Assume that there are terminal constraints:
– x(k + N |k) = 0 for predicted state x

– u(k + N |k) = 0 for computed future control u

Then if the optimization problem is feasible at time k, x = 0 is stable.

Proof: Can use the performance index J as a Lyapunov function.

– Assume there exists a feasible solution at time k and cost Jk

– Can use that solution to develop a feasible candidate at time k + 1,
by simply adding u(k + N + 1) = 0 and x(k + N + 1) = 0.

– Key point: can estimate the candidate controller performance

J̃k+1	 = Jk − {�z(k|k)�Rzz + �u(k|k)�Ruu}

≤ Jk − {�z(k|k)�Rzz}

– This candidate is suboptimal for the MPC algorithm, hence J de

creases even faster Jk+1 ≤ J̃
k+1

– Which says that J decreases if the state cost is non-zero (observ

ability assumptions) but J is lower bounded by zero. ⇒

•	 Mayne et al. [2000] provides excellent review of other strategies for
proving stability – different terminal cost and constraint sets

33“Tutorial: model predictive control technology,” Rawlings, J.B. American Control Conference, 1999. pp. 662-676

34Mayne, D.Q., J.B. Rawlings, C.V. Rao and P.O.M. Scokaert, ”Constrained Model Predictive Control: Stability and Optimality,”
Automatica, 36, 789-814 (2000).

35A. Bemporad, L. Chisci, E. Mosca: ”On the stabilizing property of SIORHC”, Automatica, vol. 30, n. 12, pp. 2013-2015, 1994.

June 18, 2008

Example: Helicopter Spr 2008 16.323 16–10

• Consider a system similar to the Quansar helicopter36

• There are 2 control inputs – voltage to each fan Vf , Vb
• A simple dynamics model is that:

¨ θe = K1(Vf + Vb) − Tg/Je
¨ θr = −K2 sin(θp)
¨ θp = K3(Vf − Vb)

and there are physical limits on the elevation and pitch:

−0.5 ≤ θe ≤ 0.6 − 1 ≤ θp ≤ 1

• Model can be linearized and then discretized Ts = 0.2sec.

0 5 10 15 20 25
0

2

4

6

8

10

12

N

State
Control
Time

Figure 16.3: Response Summary

36ISSN 02805316 ISRN LUTFD2/TFRT- -7613- -SE MPCtools 1.0 Reference Manual Johan Akesson Department of Automatic
Control Lund Institute of Technology January 2006

June 18, 2008

θp

θe

θr

θp

θe

θr

θp

θe

θr

Figure by MIT OpenCourseWare.

Spr 2008

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

E
le

va
tio

n
[ra

d]

0 10 20 30
−1

−0.5

0

0.5

1

t [s]

P
itc

h
[ra

d]

0 10 20 30
−1

0

1

2

3

4

R
ot

at
io

n
[ra

d]

0 10 20 30
−2

−1

0

1

2

3

4

V
f, V

b [V
]

t [s]

16.323 16–11

Figure 16.4: Response with N = 3

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

E
le

va
tio

n
[ra

d]

0 10 20 30
−1

−0.5

0

0.5

1

t [s]

P
itc

h
[ra

d]

0 10 20 30
−1

0

1

2

3

4
R

ot
at

io
n

[ra
d]

0 10 20 30
−2

−1

0

1

2

3

4

V
f, V

b [V
]

t [s]

Figure 16.5: Response with N = 10

0 10 20 30
−0.1

0

0.1

0.2

0.3

0.4

E
le

va
tio

n
[ra

d]

0 10 20 30
−1

−0.5

0

0.5

1

t [s]

P
itc

h
[ra

d]

0 10 20 30
−1

0

1

2

3

4

R
ot

at
io

n
[ra

d]

0 10 20 30
−2

−1

0

1

2

3

4

V
f, V

b [V
]

t [s]

Figure 16.6: Response with N = 25

June 18, 2008

	16.323: Principles of Optimal Control
	Lecture 16: Model Predictive Control
	MPC
	Fig: MPC: basic idea (from Bo Wahlberg)
	Fig: Implementation architectures for MPC (from Mark Milam)

	Basic Formulation
	Toolboxes
	MPC Observations
	Example: Helicopter
	Fig: Response Summary
	Fig: Response with N=3
	Fig: Response with N=10
	Fig: Response with N=25

