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16.323 Lecture 16 

Model Predictive Control 

•	 Allgower, F., and A. Zheng, Nonlinear Model Predictive Control, Springer-Verlag, 
2000. 

•	 Camacho, E., and C. Bordons, Model Predictive Control, Springer-Verlag, 1999. 
•	 Kouvaritakis, B., and M. Cannon, Non-Linear Predictive Control: Theory & 

Practice, IEE Publishing, 2001. 
•	 Maciejowski, J., Predictive Control with Constraints, Pearson Education POD, 

2002. 
•	 Rossiter, J. A., Model-Based Predictive Control: A Practical Approach, CRC 

Press, 2003. 
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MPC


• Planning in Lecture 8 was effectively “open-loop” 
– Designed the control input sequence u(t) using an assumed model 

and set of constraints. 

– Issue is that with modeling error and/or disturbances, these inputs 
will not necessarily generate the desired system response. 

• Need a “closed-loop” strategy to compensate for these errors. 

– Approach called Model Predictive Control 

– Also known as receding horizon control 

• Basic strategy: 
– At time k, use knowledge of the system model to design an input 

sequence 

u(k|k), u(k + 1|k), u(k + 2|k), u(k + 3|k), . . . , u(k + N |k) 

over a finite horizon N from the current state x(k) 

– Implement a fraction of that input sequence, usually just first step. 

– Repeat for time k + 1 at state x(k + 1) 
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•	 Note that the control algorithm is based on numerically solving an 
optimization problem at each step 
– Typically a constrained optimization 

•	 Main advantage of MPC: 
– Explicitly accounts for system constraints. 
� Doesn’t just design a controller to keep the system away from 

them. 

– Can easily handle nonlinear and time-varying plant dynamics, since 
the controller is explicitly a function of the model that can be mod

ified in real-time (and plan time) 

•	 Many commercial applications that date back to the early 1970’s, see 
http://www.che.utexas.edu/~qin/cpcv/cpcv14.html 
– Much of this work was in process control - very nonlinear dynamics, 

but not particularly fast. 

•	 As computer speed has increased, there has been renewed interest in 
applying this approach to applications with faster time-scale: trajec

tory design for aerospace systems. 
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Basic Formulation 
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•	 Given a set of plant dynamics (assume linear for now) 

x(k + 1) = Ax(k) + Bu(k) 

z(k) = Cx(k) 

and a cost function 
N

J	= {�z(k + j|k)�Rzz + �u(k + j|k)�Ruu} + F (x(k + N |k)) 
j=0 

– �z(k + j|k)�Rxx is just a short hand for a weighted norm of the 
state, and to be consistent with earlier work, would take 

�z(k + j|k)�Rzz = z(k + j|k)TRzzz(k + j|k) 

– F (x(k + N |k)) is a terminal cost function 

•	 Note that if N →∞, and there are no additional constraints on z or 
u, then this is just the discrete LQR problem solved on page 3–14. 

– Note that the original LQR result could have been written as just 
an input control sequence (feedforward), but we choose to write 
it as a linear state feedback. 

– In the nominal case, there is no difference between these two im

plementation approaches (feedforward and feedback) 

– But with modeling errors and disturbances, the state feedback form 
is much less sensitive. 

⇒ This is the main reason for using feedback. 

•	 Issue: When limits on x and u are added, we can no longer find the 
general solution in analytic form must solve it numerically. ⇒ 
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•	 However, solving for a very long input sequence: 
– Does not make sense if one expects that the model is wrong and/or 

there are disturbances, because it is unlikely that the end of the 
plan will be implemented (a new one will be made by then) 

– Longer plans have more degrees of freedom and take much longer 
to compute. 

•	 Typically design using a small N ⇒ short plan that does not necessarily 
achieve all of the goals. 
– Classical hard question is how large should N be? 

– If plan doesn’t reach the goal, then must develop an estimate of the 
remaining cost-to-go 

•	 Typical problem statement: for finite N (F = 0) 

N

min J =	 k)�Rzz + �u(k + j k)�Ruu}u 
{�z(k + j|	 |

j=0 

s.t. x(k + j + 1|k) = Ax(k + j|k) + Bu(k + j|k) 

x(k|k) ≡ x(k)


z(k + j|k) = Cx(k + j|k)


and |u(k + j|k)| ≤ um 
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• Consider converting this into a more standard optimization problem. 

z(k|k) = Cx(k|k) 

z(k + 1|k) = Cx(k + 1|k) = C(Ax(k|k) + Bu(k|k)) 

= CAx(k|k) + CBu(k|k) 

z(k + 2|k) = Cx(k + 2|k) 

= C(Ax(k + 1|k) + Bu(k + 1|k)) 

= CA(Ax(k|k) + Bu(k|k)) + CBu(k + 1|k) 

= CA2 x(k|k) + CABu(k|k) + CBu(k + 1|k) 
... 

z(k + N |k) =	 CAN x(k|k) + CAN−1Bu(k|k) + · · · 
+CBu(k + (N − 1)|k) 

• Combine these equations into the following: 

⎤⎡⎤⎡ 
z(k k)
 C
|

z(k + 1⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎦

=


⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎦

x(k k)
|


|

|

k)

k)


CA

CA2
z(k + 2


.. ...
 . 
CANz(k + N |k)
⎡
 ⎤⎡ 

⎤ 
0 0 0 · · · 0 
CB 0 0 0 
CAB CB 0 0 

u(k|k) 
u(k + 1

⎢⎢⎢⎢⎢⎣


⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎦
... 

⎥⎥⎥⎦

|k)


+
 ... 

CAN−1B CAN−2B CAN−3B CB 
u(k + N − 1|k) · · · 
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Now define • ⎡ ⎤ ⎡ ⎤ 
z(k k) u(k k) 

Z(k) ≡ ⎣ ...
| ⎦ U(k) ≡ ⎣ ...

| ⎦ 

z(k + N |k) u(k + N − 1|k) 

then, with x(k|k) = x(k) 

Z(k) = Gx(k) + HU(k) 

Note that • 
N

z(k + j|k)TRzzz(k + j|k) = Z(k)TW1Z(k) 
j=0 

with an obvious definition of the weighting matrix W1 

Thus • 

Z(k)TW1Z(k) + U(k)TW2U(k) 

= (Gx(k) + HU(k))TW1(Gx(k) + HU(k)) + U(k)TW2U(k) 
1 

= x(k)TH1x(k) + H2 
TU(k) + U(k)TH3U(k)

2 
where 

H1 = GTW1G, H2 = 2(x(k)TGTW1H), H3 = 2(HTW1H + W2) 

• Then the MPC problem can be written as: 

min J̃ = H2 
TU(k) + 

1 
U(k)TH3U(k) 

U(k) 2 

IN s.t. U(k) ≤ um −IN 

June 18, 2008 
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•	 Key point: the MPC problem is now in the form of a standard 
quadratic program for which standard and efficient codes exist. 

QUADPROG Quadratic programming. %

X=QUADPROG(H,f,A,b) attempts to solve the %

quadratic programming problem:


min 0.5*x’*H*x + f’*x subject to: A*x <= b

x


X=QUADPROG(H,f,A,b,Aeq,beq) solves the problem % 
above while additionally satisfying the equality% 
constraints Aeq*x = beq. 

•	 Several Matlab toolboxes exist for testing these ideas 
– MPC toolbox by Morari and Ricker – extensive analysis and design 

tools. 

– MPCtools 32 enables some MPC simulation and is free 
www.control.lth.se/user/johan.akesson/mpctools/ 

32Johan Akesson: ”MPCtools 1.0 - Reference Manual”. Technical report ISRN LUTFD2/TFRT–7613–SE, Department of Auto
matic Control, Lund Institute of Technology, Sweden, January 2006. 
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• Current form assumes that full state is available - can hookup with an 
estimator 

•	 Current form assumes that we can sense and apply corresponding con

trol immediately 
– With most control systems, that is usually a reasonably safe as

sumption 

– Given that we must re-run the optimization, probably need to ac
count for this computational delay - different form of the discrete 
model - see F&P (chapter 2) 

•	 If the constraints are not active, then the solution to the QP is that 

U(K) = −H−1H23 

which can be written as: 

u(k|k) = − 1 0 . . . 0 (HTW1H + W2)
−1HTW1Gx(k) 

= −Kx(k) 

which is just a state feedback controller. 
– Can apply this gain to the system and check the eigenvalues. 

June 18, 2008 
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•	 What can we say about the stability of MPC when the constraints are 
active? 33 

– Depends a lot on the terminal cost and the terminal constraints.34 

•	 Classic result:35 Consider a MPC algorithm for a linear system with 
constraints. Assume that there are terminal constraints: 
– x(k + N |k) = 0 for predicted state x 

– u(k + N |k) = 0 for computed future control u 

Then if the optimization problem is feasible at time k, x = 0 is stable. 

Proof: Can use the performance index J as a Lyapunov function. 

– Assume there exists a feasible solution at time k and cost Jk 

– Can use that solution to develop a feasible candidate at time k + 1, 
by simply adding u(k + N + 1) = 0 and x(k + N + 1) = 0. 

– Key point: can estimate the candidate controller performance 

J̃k+1	 = Jk − {�z(k|k)�Rzz + �u(k|k)�Ruu} 

≤ Jk − {�z(k|k)�Rzz} 

– This candidate is suboptimal for the MPC algorithm, hence J de

creases even faster Jk+1 ≤ J̃  
k+1 

– Which says that J decreases if the state cost is non-zero (observ

ability assumptions) but J is lower bounded by zero. ⇒ 

•	 Mayne et al. [2000] provides excellent review of other strategies for 
proving stability – different terminal cost and constraint sets 

33“Tutorial: model predictive control technology,” Rawlings, J.B. American Control Conference, 1999. pp. 662-676 

34Mayne, D.Q., J.B. Rawlings, C.V. Rao and P.O.M. Scokaert, ”Constrained Model Predictive Control: Stability and Optimality,” 
Automatica, 36, 789-814 (2000). 

35A. Bemporad, L. Chisci, E. Mosca: ”On the stabilizing property of SIORHC”, Automatica, vol. 30, n. 12, pp. 2013-2015, 1994. 
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• Consider a system similar to the Quansar helicopter36 

• There are 2 control inputs – voltage to each fan Vf , Vb 
• A simple dynamics model is that: 

¨ θe = K1(Vf + Vb) − Tg/Je 
¨ θr = −K2 sin(θp) 
¨ θp = K3(Vf − Vb) 

and there are physical limits on the elevation and pitch: 

−0.5 ≤ θe ≤ 0.6 − 1 ≤ θp ≤ 1 

• Model can be linearized and then discretized Ts = 0.2sec. 
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Figure 16.3: Response Summary


36ISSN 02805316 ISRN LUTFD2/TFRT- -7613- -SE MPCtools 1.0 Reference Manual Johan Akesson Department of Automatic 
Control Lund Institute of Technology January 2006 
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Figure 16.4: Response with N = 3
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Figure 16.5: Response with N = 10
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Figure 16.6: Response with N = 25
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