MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Topic \#14

16.31 Feedback Control Systems

MIMO Systems

- Singular Value Decomposition

Multivariable Frequency Response

- In the MIMO case, the system $G(s)$ is described by a $p \times m$ transfer function matrix (TFM)
- Still have that $G(s)=C(s I-A)^{-1} B+D$
- But $G(s) \rightarrow A, B, C, D$ MUCH less obvious than in SISO case.
- Also seen that the discussion of poles and zeros of MIMO systems is much more complicated.
- In SISO case we use the Bode plot to develop a measure of the system "size".
- Given $z=G w$, where $G(\mathrm{j} \omega)=|G(\mathrm{j} \omega)| e^{j \phi(w)}$
- Then $w=|w| e^{j\left(\omega_{1} t+\psi\right)}$ applied to $|G(\mathrm{j} \omega)| e^{j \phi(w)}$ yields

$$
|w|\left|G\left(\mathrm{j} \omega_{1}\right)\right| e^{j\left(\omega_{1} t+\psi+\phi\left(\omega_{1}\right)\right)}=|z| e^{j\left(\omega_{1} t+\psi_{o}\right)} \equiv z
$$

- Amplification and phase shift of the input signal obvious in the SISO case.
- MIMO extension?
- Is the response of the system large or small?

$$
G(s)=\left[\begin{array}{cc}
10^{3} / s & 0 \\
0 & 10^{-3} / s
\end{array}\right]
$$

- For MIMO systems, cannot just plot all of the $g_{i j}$ elements of G
- Ignores the coupling that might exist between them.
- So not enlightening.
- Basic MIMO frequency response:
- Restrict all inputs to be at the same frequency
- Determine how the system responds at that frequency
- See how this response changes with frequency
- So inputs are $\mathbf{w}=\mathbf{w}_{c} e^{j \omega t}$, where $\mathbf{w}_{c} \in \mathbb{C}^{m}$
- Then we get $\mathbf{z}=\left.G(s)\right|_{s=\mathbf{j} \omega} \mathbf{w}, \quad \Rightarrow \mathbf{z}=\mathbf{z}_{c} e^{j \omega t}$ and $\mathbf{z}_{c} \in \mathbb{C}^{p}$
- We need only analyze $\mathbf{z}_{c}=G(\mathrm{j} \omega) \mathbf{w}_{c}$
- As in the SISO case, we need a way to establish if the system response is large or small.
- How much amplification we can get with a bounded input.
- Consider $\mathbf{z}_{c}=G(\mathrm{j} \omega) \mathbf{w}_{c}$ and set $\left\|\mathbf{w}_{c}\right\|_{2}=\sqrt{\mathbf{w}_{c}^{H} \mathbf{w}_{c}} \leq 1$. What can we say about the $\left\|\mathbf{z}_{c}\right\|_{2}$?
- Answer depends on ω and on the direction of the input \mathbf{w}_{c}
- Best found using singular values.

Spr 2008
 Singular Value Decomposition

- Must perform SVD of the matrix $G(s)$ at each frequency $s=\mathbf{j} \omega$

$$
\begin{gathered}
G(\mathrm{j} \omega) \in \mathbb{C}^{p \times m} \quad U \in \mathbb{C}^{p \times p} \quad \Sigma \in \mathbb{R}^{p \times m} \quad V \in \mathbb{C}^{m \times m} \\
G=U \Sigma V^{H}
\end{gathered}
$$

$-U^{H} U=I, U U^{H}=I, V^{H} V=I, V V^{H}=I$, and Σ is diagonal.

- Diagonal elements $\sigma_{k} \geq 0$ of Σ are the singular values of G.

$$
\sigma_{i}=\sqrt{\lambda_{i}\left(G^{H} G\right)} \quad \text { or } \quad \sigma_{i}=\sqrt{\lambda_{i}\left(G G^{H}\right)}
$$

the positive ones are the same from both formulas.

- Columns of matrices U and $V\left(u_{i}\right.$ and $\left.v_{j}\right)$ are the associated eigenvectors

$$
\begin{aligned}
G^{H} G v_{j} & =\sigma_{j}^{2} v_{j} \\
G G^{H} u_{i} & =\sigma_{i}^{2} u_{i} \\
G v_{i} & =\sigma_{i} u_{i}
\end{aligned}
$$

- If the $\operatorname{rank}(G)=r \leq \min (p, m)$, then
$-\sigma_{k}>0, k=1, \ldots, r$
$-\sigma_{k}=0, k=r+1, \ldots, \min (p, m)$
- Singular values are sorted so that $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$
- An SVD gives a very detailed description of how a matrix (the system G) acts on a vector (the input w) at a particular frequency.
- So how can we use this result?
- Fix the size $\left\|\mathbf{w}_{c}\right\|_{2}=1$ of the input, and see how large we can make the output.
- Since we are working at a single frequency, we just analyze the relation

$$
\mathbf{z}_{c}=G_{w} \mathbf{w}_{c}, \quad G_{w} \equiv G(s=\mathbf{j} \omega)
$$

- Define the maximum and minimum amplifications as:

$$
\begin{aligned}
\bar{\sigma} & \equiv \max _{\left\|\mathbf{w}_{c}\right\|_{2}=1}\left\|\mathbf{z}_{c}\right\|_{2} \\
\underline{\sigma} & \equiv \min _{\left\|\mathbf{w}_{c}\right\|_{2}=1}\left\|\mathbf{z}_{c}\right\|_{2}
\end{aligned}
$$

- Then we have that (let $q=\min (p, m)$)

$$
\begin{aligned}
\bar{\sigma} & =\sigma_{1} \\
\underline{\sigma} & =\left\{\begin{array}{ccc}
\sigma_{q} & p \geq m & \text { "tall" } \\
0 & p<m & \text { "wide" }
\end{array}\right.
\end{aligned}
$$

- Can use $\bar{\sigma}$ and $\underline{\sigma}$ to determine the possible amplification and attenuation of the input signals.
- Since $G(s)$ changes with frequency, so will $\bar{\sigma}$ and $\underline{\sigma}$
- Consider (wide case)

$$
\begin{aligned}
G_{w}=\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 0.5 & 0
\end{array}\right] & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 0.5 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =U \Sigma V^{H}
\end{aligned}
$$

so that $\sigma_{1}=5$ and $\sigma_{2}=0.5$

$$
\begin{aligned}
\bar{\sigma} & \equiv \max _{\left\|\mathbf{w}_{c}\right\|_{2}=1}\left\|G_{w} \mathbf{w}_{c}\right\|_{2}=5=\sigma_{1} \\
\underline{\sigma} & \equiv \min _{\left\|\mathbf{w}_{c}\right\|_{2}=1}\left\|G_{w} \mathbf{w}_{c}\right\|_{2}=0 \neq \sigma_{2}
\end{aligned}
$$

- But now consider (tall case)

$$
\begin{aligned}
\tilde{G}_{w}=\left[\begin{array}{cc}
5 & 0 \\
0 & 0.5 \\
0 & 0
\end{array}\right] & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & 0 \\
0 & 0.5 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =U \Sigma V^{H}
\end{aligned}
$$

so that $\sigma_{1}=5$ and $\sigma_{2}=0.5$ still.

$$
\begin{aligned}
\bar{\sigma} & \equiv \max _{\left\|\mathbf{w}_{c}\right\|_{2}=1}\left\|G_{w} \mathbf{w}_{c}\right\|_{2}=5=\sigma_{1} \\
\underline{\sigma} & \equiv \min _{\left\|\mathbf{w}_{c}\right\|_{2}=1}\left\|G_{w} \mathbf{w}_{c}\right\|_{2}=0.5=\sigma_{2}
\end{aligned}
$$

- For MIMO systems, the gains (or σ^{\prime} s) are only part of the story, as we must also consider the input direction.
- To analyze this point further, note that we can rewrite

$$
\begin{aligned}
G_{w} & =U \Sigma V^{H}=\left[\begin{array}{lll}
u_{1} & \ldots & u_{p}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{m} \\
& 0 &
\end{array}\right]\left[\begin{array}{c}
v_{1}^{H} \\
\vdots \\
v_{m}^{H}
\end{array}\right] \\
& =\sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{H}
\end{aligned}
$$

- Assumed tall case for simplicity, so $p>m$ and $q=m$
- Can now analyze impact of various alternatives for the input - Only looking at one frequency, so the basic signal is harmonic.
- But, we are free to pick the relative sizes and phases of each of the components of the input vector \mathbf{w}_{c}.
\diamond These define the input direction
- For example, we could pick $\mathbf{w}_{c}=v_{1}$, then

$$
\mathbf{z}_{c}=G_{w} \mathbf{w}_{c}=\left(\sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{H}\right) v_{1}=\sigma_{1} u_{1}
$$

since $v_{i}^{H} v_{j}=\delta_{i j}$.

- Output amplified by σ_{1}. The relative sizes and phases of each of the components of the output are given by the vector \mathbf{Z}_{c}.
- By selecting other input directions (at the same frequency), we can get quite different amplifications of the input signal

$$
\underline{\sigma} \leq \frac{\left\|G_{w} \mathbf{w}_{c}\right\|_{2}}{\left\|\mathbf{w}_{c}\right\|_{2}} \leq \bar{\sigma}
$$

- Thus we say that
$-G_{w}$ is large if $\underline{\sigma}\left(G_{w}\right) \gg 1$
$-G_{w}$ is small if $\bar{\sigma}\left(G_{w}\right) \ll 1$
- MIMO frequency response are plots of $\bar{\sigma}(\mathrm{j} \omega)$ and $\underline{\sigma}(\mathrm{j} \omega)$.
- Then use the singular value vectors to analyze the response at a particular frequency.

