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16.323 Lecture 11 

Estimators/Observers 

• Bryson Chapter 12

• Gelb – Optimal Estimation 
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Estimators/Observers


Problem: So far we have assumed that we have full access to the • 
state x(t) when we designed our controllers. 
– Most often all of this information is not available. 

– And certainly there is usually error in our knowledge of x. 

•	 Usually can only feedback information that is developed from the sen

sors measurements. 
– Could try “output feedback” u = Kx u = K̂y⇒ 

– But this is type of controller is hard to design. 

•	 Alternative approach: Develop a replica of the dynamic system that 
provides an “estimate” of the system states based on the measured 
output of the system. 

•	 New plan: called a “separation principle” 
1. Develop estimate of x(t), called x̂(t). 

2. Then switch from u = −Kx(t) to u = −Kx̂(t). 

•	 Two key questions: 
– How do we find x̂(t)? 

– Will this new plan work? (yes, and very well) 
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• Assume that the system model is of the form: 

ẋ = Ax + Bu , x(0) unknown 

y = Cyx 

where 
– A, B, and Cy are known – possibly time-varying, but that is sup

pressed here. 
– u(t) is known 
– Measurable outputs are y(t) from Cy = I 

• Goal: Develop a dynamic system whose state 

x̂(t) = x(t) ∀t ≥ 0 

Two primary approaches: 
– Open-loop. 
– Closed-loop. 
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•	 Given that we know the plant matrices and the inputs, we can just 
perform a simulation that runs in parallel with the system 

ẋ̂(t) = Ax̂ + Bu(t) 

– Then x̂(t) ≡ x(t) ∀ t provided that x̂(0) = x(0) 

System A,B,Cy 

⇒ x(t) 

y(t) 
��

u(t) 

��

��
Observer A,B,Cy 

⇒ x̂(t) 

ŷ(t) 
��

•	 To analyze this case, start with: 

ẋ(t) = Ax(t) + Bu(t) 

ẋ̂(t) = Ax̂(t) + Bu(t) 

•	 Define the estimation error: x̃(t) = x(t) − x̂(t). 
– Now want x̃(t) = 0 ∀ t, but is this realistic? 

• Major Problem: We do not know x(0)
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•	 Subtract to get: 

d 
dt

(x − x̂) = A(x − x̂) ⇒ ẋ̃(t) = Ax̃

which has the solution 

x̃(t) = eAt x̃(0) 

– Gives the estimation error in terms of the initial error. 

•	 Does this guarantee that x̃ = 0 ∀ t? 
Or even that x̃ 0 as t →∞? (which is a more realistic goal). → 

– Response is fine if x̃(0) = 0. But what if x̃(0) = 0? 

•	 If A stable, then x̃ → 0 as t →∞, but the dynamics of the estimation 
error are completely determined by the open-loop dynamics of the 
system (eigenvalues of A). 
– Could be very slow. 

– No obvious way to modify the estimation error dynamics. 

•	 Open-loop estimation is not a very good idea. 
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Obvious fix to problem: use the additional information available:• 
– How well does the estimated output match the measured output? 

Compare: y = Cyx with ŷ = Cyx̂

– Then form ỹ = y − ŷ ≡ Cy ̃x 

System A,B,Cy 

→ x(t) 

y(t) 
��

+����

��

u(t) 

��

��

L 

Observer A,B,Cy 

→ x̂(t) 

ŷ(t) 
��

− 

•	 Approach: Feedback ỹ to improve our estimate of the state. Basic 
form of the estimator is: 

ẋ̂(t) = Ax̂(t) + Bu(t) + Lỹ(t) 

ŷ(t) = Cyx̂(t) 

where L is a user selectable gain matrix. 

Analysis:• 

ẋ̃ = ẋ− ẋ̂ = [Ax + Bu] − [Ax̂ + Bu + L(y − ŷ)] 

= A(x − x̂) − L(Cx − Cyx̂) 

= Ax̃− LCyx̃ = (A − LCy)x̃

June 18, 2008 
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•	 So the closed-loop estimation error dynamics are now 

ẋ̃ = (A − LCy)x̃ with solution x̃(t) = e(A−LCy)t x̃(0) 

•	 Bottom line: Can select the gain L to attempt to improve the 
convergence of the estimation error (and/or speed it up). 
– But now must worry about observability of the system [A,Cy]. 

•	 Note the similarity: 
– Regulator Problem: pick K for A − BK 
�	Choose K ∈ R1×n (SISO) such that the closed-loop poles 

det(sI − A + BK) = Φc(s) 

are in the desired locations. 
– Estimator Problem: pick L for A − LCy 

�	Choose L ∈ Rn×1 (SISO) such that the closed-loop poles 

det(sI − A + LCy) = Φo(s) 

are in the desired locations. 

•	 These problems are obviously very similar – in fact they are called 
dual problems 

– Note: poles of (A − LCy) and (A − LCy)T are identical. 

– Also have that (A − LCy)T = AT − CTLT 
y 

– So designing LT for this transposed system looks like a standard 
regulator problem (A − BK) where 

A AT ⇒ 
B CT ⇒ y 

K LT ⇒ 
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Estimator Example 10–1


• Simple system (see page 11-23) � � � � � � −1 1.5 1 −0.5 
A = , B = , x(0) = 

1 −2 0 −1 

Cy = 1 0 , D = 0 

– Assume that the initial conditions are not well known. 

– System stable, but λmax(A) = −0.18 

– Test observability: 

Cy 1 0 
rank = rank 

CyA −1 1.5 

Use open and closed-loop estimators. Since the initial conditions are 
0 

not well known, use x̂(0) = 
0 

• Open-loop estimator: 

ẋ̂ = Ax̂ + Bu 

ŷ = Cyx̂

• Closed-loop estimator: 

ẋ̂ = Ax̂ + Bu + Lỹ = Ax̂ + Bu + L(y − ŷ) 

= (A − LCy)x̂ + Bu + Ly 

ŷ = Cyx̂

– Dynamic system with poles λi(A − LCy) that takes the measured 
plant outputs as an input and generates an estimate of x. 

– Use place command to set closed-loop pole locations 
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• Typically simulate both systems together for simplicity 

• Open-loop case: 

ẋ = Ax + Bu 

y = Cyx 

ẋ̂ = Ax̂ + Bu 

ŷ = Cyx̂ ⎡ ⎤ � � � � � � � � � � ⎢ 
−0.5 ⎥ ẋ

= 
A 0 x 

+ 
B 

u , 
x(0) 

= ⎢ −1 ⎥ ⇒	
ẋ̂ 0 A x̂ B x̂(0) 

⎢⎣ 0 
⎥⎦ 

0 � � � � � � 
y Cy 0 x 

= 
ŷ	 0 Cy x̂

• Closed-loop case: 

ẋ = Ax + Bu 

ẋ̂ = (A − LCy)x̂ + Bu + LCyx � � �	 � � � � � 
ẋ A 0 x B ⇒ 
ẋ̂

= 
LCy A − LCy x̂

+ 
B 

u 

• Example uses a strong u(t) to shake things up
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Figure 11.1: Open-loop estimator. Estimation error converges to zero, but very

slowly. 
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Figure 11.2: Closed-loop estimator. Convergence looks much better.
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•	 Location heuristics for poles still apply – use Bessel, ITAE, . . . 

– Main difference: probably want to make the estimator faster than 
you intend to make the regulator – should enhance the control, 
which is based on x̂(t). 

– ROT: Factor of 2–3 in the time constant ζωn associated with the 
regulator poles. 

•	 Note: When designing a regulator, were concerned with “bandwidth” 
of the control getting too high often results in control commands ⇒ 
that saturate the actuators and/or change rapidly. 

Different concerns for the estimator: • 
– Loop closed inside computer, so saturation not a problem. 

– However, the measurements y are often “noisy”, and we need to 
be careful how we use them to develop our state estimates. 

⇒ High bandwidth estimators tend to accentuate the effect of sens

ing noise in the estimate. 
– State estimates tend to “track” the measurements, which are fluc

tuating randomly due to the noise. 

⇒ Low bandwidth estimators have lower gains and tend to rely more 
heavily on the plant model 
– Essentially an open-loop estimator – tends to ignore the measure

ments and just uses the plant model. 
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•	 Can also develop an optimal estimator for this type of system. 

– Given duality of regulator and estimator, would expect to see close 
connection between optimal estimator and regulator (LQR) 

•	 Key step is to balance the effect of the various types of random noise 
in the system on the estimator: 

ẋ = Ax + Bu + Bww 

y = Cyx + v 

– w: “process noise” – models uncertainty in the system model. 
– v: “sensor noise” – models uncertainty in the measurements. 

•	 Typically assume that w(t) and v(t) are zero mean E[w(t)] = 0 and 
– Uncorrelated Gaussian white random noises: no correlation between 

the noise at one time instant and another 

E[w(t1)w(t2)
T ] =Rww(t1)δ(t1 − t2) ⇒ w(t) ∼ N (0, Rww) 

E[v(t1)v(t2)
T ] =Rvv(t1)δ(t1 − t2) ⇒ v(t) ∼ N (0, Rvv) 

E[w(t1)v(t2)
T ] =0 
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Figure 11.3: Example of impact of covariance = σ2 on the distribution of the PDF 
– wide distribution corresponds to large uncertainty in the variable 

June 18, 2008 



Spr 2008	 Analysis 16.323 11–12 

•	 With noise in the system, the model is of the form: 

ẋ = Ax + Bu + Bww , y = Cyx + v 

– And the estimator is of the form: 

ẋ̂ = Ax̂ + Bu + L(y − ŷ) , ŷ = Cyx̂

•	 Analysis: in this case: 

ẋ̃ = ẋ− ẋ̂ = [Ax + Bu + Bww] − [Ax̂ + Bu + L(y − ŷ)] 

=	 A(x − x̂) − L(Cyx − Cyx̂) + Bww − Lv 

=	 Ax̃− LCyx̃ + Bww − Lv 

=	 (A − LCy)x̃ + Bww − Lv (11.18) 

•	 This equation of the estimation error explicitly shows the conflict in 
the estimator design process. Must balance between: 
– Speed of the estimator decay rate, which is governed by 

Re[λi(A − LCy)] 

– Impact of the sensing noise v through the gain L 

•	 Fast state reconstruction requires rapid decay rate – typically requires 
a large L, but that tends to magnify the effect of v on the estimation 
process. 
– The effect of the process noise is always there, but the choice of L 

will tend to mitigate/accentuate the effect of v on x̃(t). 

•	 Kalman Filter needs to provide an optimal balance between the 
two conflicting problems for a given “size” of the process and sensing 
noises. 

June 18, 2008 
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•	 Note that Eq. 11.18 is of the form of a linear time-varying system 
driven by white Gaussian noise 
– Can predict the mean square value of the state (estimation error 

in this case) Q(t) = E[x̃(t)x̃(t)T ] over time using Q(0) = Q0 and 

Q̇(t) = [A − LCy] Q(t) + Q(t) [�A − LCy]
T � � � � � Rww 0 BT 

+	 wBw −L 
0 Rvv −LT 

= [A − LCy] Q(t) + Q(t) [A − LCy]
T + BwRwwBw

T + LRvvL
T 

– Called a matrix differential Lyapunov Equation16 

•	 Note that ideally would like to minimize Q(t) or trace Q(t), but that 
is difficult to do & describe easily17 . 

Instead, consider option of trying to minimize trace Q̇(t), the argu•	
ment being that then 

� 
0 
t 
trace Q̇(τ )dτ is small. 

– Not quite right, but good enough to develop some insights 

•	 To proceed note that 

∂	 ∂ 
trace[AXB] = trace[BTXTAT ] = ATBT 

∂X	 ∂X 
and 

∂ 
trace[AXBXTC] = ATCTXBT + CAXB 

∂X 

•	 So for minimum we require that 

∂ 
trace Q̇ = −2QTCT + 2LRvv = 0 

∂L	 y 

which implies that 
L = Q(t)CTR−1 

y vv 

16See K+S, chapter 1.11 for details. 

17My 16.324 discuss how to pose the problem in discrete time and then let Δt 0 to recover the continuous time results. → 
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•	 Note that if we use this expression for L in the original differential 
Lyapunov Equation, we obtain: 

Q̇(t) = [A − LCy] Q(t) + Q(t) [A − LCy]
T + BwRwwB

T + LRvvL
T 

w 

= 
� 
A − Q(t)CTR−1Cy 

� 
Q(t) + Q(t) 

� 
A − Q(t)CTR−1Cy 

�T 
y vv y vv 

+BwRwwB
T + Q(t)CTR−1Rvv(Q(t)CTR−1)T 
w y vv	 y vv 

= AQ(t) + Q(t)AT − 2Q(t)CTR−1CyQ(t) + BwRwwB
T 

y vv w 

+Q(t)Cy
T 

vv CyQ(t)R−1 

Q̇(t) = AQ(t) + Q(t)AT BT	 R−1 Q(t)+ BwRww w − Q(t)Cy
T 

vv Cy

which is obviously a matrix differential Riccati equation. 

June 18, 2008 



�	 � 

Spr 2008 Optimal Kalman Filter 16.323 11–15 

•	 Goal: develop an estimator x̂(t) which is a linear function of the 
measurements y(τ ) (0 ≤ τ ≤ t) and minimizes the function 

J	 = trace(Q(t)) 

Q(t) = E {x(t) − x̂(t)}{x(t) − x̂(t)}T 

which is the covariance for the estimation error. 

•	 Solution: is a closed-loop estimator 18 

ẋ̂(t) = Ax̂ + L(t)(y(t) − Cyx̂(t)) 

where L(t) = Q(t)CTR−1 and Q(t) ≥ 0 solves y	 vv 

Q̇(t) = AQ(t) + Q(t)AT + Bw BT − Q(t)CTR−1 Q(t)Rww w y vv Cy

– Note that x̂(0) and Q(0) are known 

– Differential equation for Q(t) solved forward in time. 

– Filter form of the differential matrix Riccati equation for the 
error covariance. 

– Note that the AQ(t) + Q(t)AT . . . is different than with the regu

lator which had P (t)A + ATP (t) . . . 

•	 Called Kalman-Bucy Filter – linear quadratic estimator (LQE) 

18See OCW notes for 16.322 “Stochastic Estimation and Control” for the details of this derivation. 
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•	 Note that an increase in Q(t) corresponds to increased uncertainty 
in the state estimate. Q̇(t) has several contributions: 
– AQ(t) + Q(t)AT is the homogeneous part 

– BwRwwBw
T increase due to the process measurements 

– Q(t)CTR−1CyQ(t) decrease due to measurements y	 vv 

•	 The estimator gain is L(t) = Q(t)CTR−1 
y	 vv 

– Feedback on the innovation, y − ŷ

– If the uncertainty about the state is high, then Q(t) is large, and 
so the innovation y − Cyx̂ is weighted heavily (L )↑

– If the measurements are very accurate Rvv , then the measure↓
ments are heavily weighted 

June 18, 2008 
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Assume that 19 • 
1. Rvv > 0, Rww > 0 

2. All plant dynamics are constant in time 

3. [A,Cy] detectable 

4. [A,Bw] stabilizable 

• Then, as with the LQR problem, the covariance of the LQE quickly 
settles down to a constant Qss independent of Q(0), as t →∞ where 

AT BT CTR−1AQss + Qss + BwRww w − Qss y vv CyQss = 0 

– Stabilizable/detectable gives a unique Qss ≥ 0 

– Qss > 0 iff [A,Bw] controllable 

– Lss = QssC
TR−1 
y vv 

• If Qss exists, the steady state filter 

ẋ̂(t) = Ax̂ + Lss(y(t) − Cyx̂(t)) 

= (A − LssCy)x̂(t) + Lssy(t) 

is asymptotically stable iff (1)–(4) above hold. 

19Compare this with 4–10 

June 18, 2008 



Spr 2008	 Filter Interpretation 16.323 11–18 

Given that ẋ̂ = (A − LCy)x̂ + Ly• 

•	 Consider a scalar system, and take the Laplace transform of both sides 
to get: 

X̂(s)	 L 
= 

Y (s) sI − (A − LCy) 

This is the transfer function from the “measurement” to the “esti• 
mated state” 
– It looks like a low-pass filter. 

•	 Clearly, by lowering Rvv, and thus increasing L, we are pushing out 
the pole. 
– DC gain asymptotes to 1/Cy as L →∞ 
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•	 Lightly Damped Harmonic Oscillator � � � � � � � � 
ẋ1	 0 1 x1 0 

=	 + w 
ẋ2 −ω2 0 x2 1 

0 

and y = x1 + v, where Rww = 1 and Rvv = r. 

– Can sense the position state of the oscillator, but want to develop 
an estimator to reconstruct the velocity state. 

•	 Symmetric root locus exists for the optimal estimator. Can find 
location of the optimal poles using a SRL based on the TF 

� � � 
s −1 

�−1 � 
0 
� 

1 N(s)
Gyw(s) = 1 0 

ω0
2 s 1

= 
s2 + ω0

2 = 
D(s) 

– SRL for the closed-loop poles λi(A − LC) of the estimator which 
are the LHP roots of: 

Rww
D(s)D(−s) ± N(s)N(−s) = 0 

Rvv 

– Pick sign to ensure that there are no poles on the jω-axis (other 
than for a gain of zero) 

– So we must find the LHP roots of � � � � 1 1 
s 2 + ω2 (−s)2 + ω2 + = (s 2 + ω0

2)2 + = 0 0	 0 r	 r 
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•	 Note that as r → 0 (clean sensor), the estimator poles tend to ∞ 
along the ±45 deg asymptotes, so the poles are approximately 

s ≈ −1 √± 
r

j
 ⇒
 Φe(s) = s
2
 2 2

+ s + = 0
√

r
 r


•	 Can use these estimate pole locations in acker, to get that ⎛	 ⎞� �2 � � � �−1 � �
0 1 2 0 1 2 C 0 

L = ⎝ + + I⎠√
r
 r CA 1
2

0
 −ω
20
−ω
 0
 0


2√
r 

� �−1 � � 
0 

2

r


− ω

2√
r 

2
0
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•	 Given L, A, and C, we can develop the estimator transfer function 
from the measurement y to the x̂2 � � � � � �

√
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•	 Filter zero asymptotes to s = 0 as r → 0 and the two poles →∞ 

•	 Resulting estimator looks like a “band-limited” differentiator. 
– Expected because we measure position and want to estimate veloc

ity. 

– Frequency band over which filter performs differentiation deter

mined by the “relative cleanliness” of the measurements. 
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Figure 11.4: Bandlimited differentiation of the position measurement from LQE: 
r = 10−2 , r = 10−4 , r = 10−6, and r = 10−8 
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Final Thoughts


•	 Note that the feedback gain L in the estimator only stabilizes the 
estimation error. 
– If the system is unstable, then the state estimates will also go to 
∞, with zero error from the actual states. 

•	 Estimation is an important concept of its own. 
– Not always just “part of the control system” 

– Critical issue for guidance and navigation system 

•	 More complete discussion requires that we study stochastic processes 
and optimization theory. 

•	 Estimation is all about which do you trust more: your 
measurements or your model. 

•	 Strong duality between LQR and LQE problems 

A	 AT ↔ 
B	 CT ↔ y 

Cz ↔ Bw
T 

Rzz	 Rww↔ 
Ruu	 Rvv↔ 
K(t) ↔ LT (tf − t)

P (t) ↔ Q(tf − t)
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Basic Estimator (examp1.m) (See page 11-7)


1 % Examples of estimator performance 
2 % Jonathan How, MIT 
3 % 16.333 Fall 2005 
4 % 
5 % plant dynamics 
6 % 
7 a=[-1 1.5;1 -2];b=[1 0]’;c=[1 0];d=0; 
8 % 
9 % estimator gain calc 

10 % 
11 l=place(a’,c’,[-3 -4]);l=l’ 
12 % 
13 % plant initial cond 
14 xo=[-.5;-1]; 
15 % extimator initial cond 
16 xe=[0 0]’; 
17 t=[0:.1:10]; 
18 % 
19 % inputs 
20 % 
21 u=0;u=[ones(15,1);-ones(15,1);ones(15,1)/2;-ones(15,1)/2;zeros(41,1)]; 
22 % 
23 % open-loop extimator 
24 % 
25 A_ol=[a zeros(size(a));zeros(size(a)) a]; 
26 B_ol=[b;b]; 
27 C_ol=[c zeros(size(c));zeros(size(c)) c]; 
28 D_ol=zeros(2,1); 
29 % 
30 % closed-loop extimator 
31 % 
32 A_cl=[a zeros(size(a));l*c a-l*c];B_cl=[b;b]; 
33 C_cl=[c zeros(size(c));zeros(size(c)) c];D_cl=zeros(2,1); 
34 

35 [y_cl,x_cl]=lsim(A_cl,B_cl,C_cl,D_cl,u,t,[xo;xe]); 
36 [y_ol,x_ol]=lsim(A_ol,B_ol,C_ol,D_ol,u,t,[xo;xe]); 
37 

38 figure(1);clf;subplot(211) 
39 plot(t,x_cl(:,[1 2]),t,x_cl(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1]); 
40 title(’Closed-loop estimator’);ylabel(’states’);xlabel(’time’) 
41 text(.25,-.4,’x_1’);text(.5,-.55,’x_2’);subplot(212) 
42 plot(t,x_cl(:,[1 2])-x_cl(:,[3 4]),’LineWidth’,2) 
43 %setlines; 
44 axis([0 4 -1 1]);grid on 
45 ylabel(’estimation error’);xlabel(’time’) 
46 

47 figure(2);clf;subplot(211) 
48 plot(t,x_ol(:,[1 2]),t,x_ol(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1]) 
49 title(’Open loop estimator’);ylabel(’states’);xlabel(’time’) 
50 text(.25,-.4,’x_1’);text(.5,-.55,’x_2’);subplot(212) 
51 plot(t,x_ol(:,[1 2])-x_ol(:,[3 4]),’LineWidth’,2) 
52 %setlines; 
53 axis([0 4 -1 1]);grid on 
54 ylabel(’estimation error’);xlabel(’time’) 
55 

56 print -depsc -f1 est11.eps; jpdf(’est11’) 
57 print -depsc -f2 est12.eps; jpdf(’est12’) 
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Filter Interpretation


% Simple LQE example showing SRL

% 16.323 Spring 2007

% Jonathan How

%

a=[0 1;-4 0];

c=[1 0]; % pos sensor

c2=[0 1]; % vel state out

f=logspace(-4,4,800);


r=1e-2;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

figure(1)

subplot(211)

f1=f;g1=g;

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e-3 1e3 1e-4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

ylabel(’Phase (deg)’)

axis([1e-3 1e3 0 200])


figure(2)

r=1e-4;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

subplot(211)

f2=f;g2=g;

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e-3 1e3 1e-4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)

ylabel(’Phase (deg)’)

%bode(nn,dd);

axis([1e-3 1e3 0 200])


figure(3)

r=1e-6;

l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

[nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

g=freqresp(nn,dd,f*j);

[r roots(nn)]

subplot(211)

f3=f;g3=g;

loglog(f,abs(g))

%hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

xlabel(’Freq (rad/sec)’)

ylabel(’Mag’)

title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

axis([1e-3 1e3 1e-4 1e4])

subplot(212)

semilogx(f,unwrap(angle(g))*180/pi)

xlabel(’Freq (rad/sec)’)
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68 ylabel(’Phase (deg)’)

69 %bode(nn,dd);

70 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

71 axis([1e-3 1e3 0 200])

72


73 figure(4)

74 r=1e-8;

75 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*a])*[0 1]’

76 [nn,dd]=ss2tf(a-l*c,l,c2,0); % to the vel estimate

77 g=freqresp(nn,dd,f*j);

78 [r roots(nn)]

79 f4=f;g4=g;

80 subplot(211)

81 loglog(f,abs(g))

82 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off

83 xlabel(’Freq (rad/sec)’)

84 ylabel(’Mag’)

85 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

86 axis([1e-3 1e3 1e-4 1e4])

87 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

88 subplot(212)

89 semilogx(f,unwrap(angle(g))*180/pi)

90 xlabel(’Freq (rad/sec)’)

91 ylabel(’Phase (deg)’)

92 %bode(nn,dd);

93 axis([1e-3 1e3 0 200])

94


95 print -depsc -f1 filt1.eps; jpdf(’filt1’)

96 print -depsc -f2 filt2.eps;jpdf(’filt2’)

97 print -depsc -f3 filt3.eps;jpdf(’filt3’)

98 print -depsc -f4 filt4.eps;jpdf(’filt4’)

99


100 figure(5);clf 
101 %subplot(211) 
102 loglog(f1,abs(g1),f2,abs(g2),f3,abs(g3),f4,abs(g4),’Linewidth’,2) 
103 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1e4 1e-4 1e-4 1e4 1e4]’,’c’);hold off 
104 xlabel(’Freq (rad/sec)’) 
105 ylabel(’Mag’) 
106 title([’Vel sens to Pos state, sen noise r=’,num2str(r)]) 
107 axis([1e-4 1e4 1e-4 1e4]) 
108 title([’Vel sens to Pos state, sen noise r=’,num2str(r)]) 
109 legend(’r=10^{-2}’,’r=10^{-4}’,’r=10^{-6}’,’r=10^{-8}’,’Location’,’NorthWest’) 
110 %subplot(212) 
111 figure(6);clf 
112 semilogx(f1,unwrap(angle(g1))*180/pi,f2,unwrap(angle(g2))*180/pi,... 
113 f3,unwrap(angle(g3))*180/pi,f4,unwrap(angle(g4))*180/pi,’Linewidth’,2);hold off 
114 xlabel(’Freq (rad/sec)’) 
115 ylabel(’Phase (deg)’) 
116 legend(’r=10^{-2}’,’r=10^{-4}’,’r=10^{-6}’,’r=10^{-8}’) 
117 %bode(nn,dd); 
118 axis([1e-4 1e4 0 200]) 
119 print -depsc -f5 filt5.eps;jpdf(’filt5’) 
120 print -depsc -f6 filt6.eps;jpdf(’filt6’) 
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