MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.323 Lecture 10

Singular Arcs

- Bryson Chapter 8
- Kirk Section 5.6
- There are occasions when the PMP

$$
\mathbf{u}^{\star}(t)=\arg \left\{\min _{\mathbf{u}(t) \in \mathcal{U}} H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t)\right\}
$$

fails to define $\mathbf{u}^{\star}(t) \Rightarrow$ can an extremal control still exist?

- Typically occurs when the Hamiltonian is linear in the control, and the coefficient of the control term equals zero.
- Example: on page 9-10 we wrote the control law:

$$
u(t)=\left\{\begin{array}{cr}
\begin{array}{cr}
-u_{m} & b< \\
0 & p_{2}(t) \\
0 & -b< \\
p_{2}(t)< & b \\
u_{m} & p_{2}(t)<
\end{array}-b
\end{array}\right.
$$

but we do not know what happens if $p_{2}=b$ for an interval of time.

- Called a singular arc.
- Bottom line is that the straightforward solution approach does not work, and we need to investigate the PMP conditions in more detail.
- Key point: depending on the system and the cost, singular arcs might exist, and we must determine their existence to fully characterize the set of possible control solutions.
- Note: control on the singular arc is determined by the requirements that the coefficient of the linear control terms in $H_{\mathbf{u}}$ remain zero on the singular arc and so must the time derivatives of $H_{\mathbf{u}}$.
- Necessary condition for scalar u can be stated as

$$
(-1)^{k} \frac{\partial}{\partial u}\left[\left(\frac{d^{2 k}}{d t^{2 k}}\right) H_{u}\right] \geq 0 \quad k=0,1,2 \ldots
$$

- With $\dot{x}=u, x(0)=1$ and $0 \leq u(t) \leq 4$, consider objective

$$
\min \int_{0}^{2}\left(x(t)-t^{2}\right)^{2} d t
$$

- First form standard Hamiltonian

$$
H=\left(x(t)-t^{2}\right)^{2}+p(t) u(t)
$$

which gives $H_{u}=p(t)$ and

$$
\begin{equation*}
\dot{p}(t)=-H_{x}=-2\left(x-t^{2}\right), \quad \text { with } p(2)=0 \tag{10.15}
\end{equation*}
$$

- Note that if $p(t)>0$, then PMP indicates that we should take the minimum possible value of $u(t)=0$.
- Similarly, if $p(t)<0$, we should take $u(t)=4$.
- Question: can we get that $H_{u} \equiv 0$ for some interval of time?
- Note: $H_{u} \equiv 0$ implies $p(t) \equiv 0$, which means $\dot{p}(t) \equiv 0$, and thus

$$
\dot{p}(t) \equiv 0 \Rightarrow x(t)=t^{2}, \quad u(t)=\dot{x}=2 t
$$

- Thus we get the control law that

$$
u(t)= \begin{cases}0 & p(t)>0 \\ 2 t \text { when } & p(t)=0 \\ 4 & p(t)<0\end{cases}
$$

- Can show by contradiction that optimal solution has $x(t) \geq t^{2}$ for $t \in[0,2]$.
- And thus we know that $\dot{p}(t) \leq 0$ for $t \in[0,2]$
- But $p(2)=0$ and $\dot{p}(t) \leq 0$ imply that $p(t) \geq 0$ for $t \in[0,2]$
- So there must be a point in time $k \in[0,2]$ after which $p(t)=0$ (some steps skipped here...)
- Check options: $k=0$? \Rightarrow contradiction
- Check options: $k=2$? \Rightarrow contradiction
- So must have $0<k<2$. How find it? Control law will be

$$
u(t)=\left\{\begin{array}{lll}
0 & \text { when } & 0 \leq t<k \\
2 t & k \leq t<2
\end{array}\right.
$$

apply this control to the state equations and get:

$$
x(t)=\left\{\begin{array}{lr}
1 & \text { when } 0 \leq t \leq k \\
t^{2}+\left(1-k^{2}\right) & k \leq t \leq 2
\end{array}\right.
$$

To find k, note that must have $p(t) \equiv 0$ for $t \in[k, 2]$, so in this time range

$$
\dot{p}(t) \equiv 0=-2\left(1-k^{2}\right) \quad \Rightarrow \quad k=1
$$

- So now both $u(t)$ and $x(t)$ are known, and the optimal solution is to "bang off" and then follow a singular arc.
- LTI system, $x_{1}(0), x_{2}(0), t_{f}$ given; $x_{1}\left(t_{f}\right)=x_{2}\left(t_{f}\right)=0$

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

and $J=\frac{1}{2} \int_{0}^{t_{f}} x_{1}^{2} d t$ (see Bryson and Ho, p. 248)

- So $H=\frac{1}{2} x_{1}(t)^{2}+p_{1}(t) x_{2}(t)+p_{1}(t) u(t)-p_{2}(t) u(t)$

$$
\Rightarrow \quad \dot{p}_{1}(t)=-x_{1}(t), \quad \dot{p}_{2}(t)=-p_{1}(t)
$$

- For a singular arc, we must have $H_{u}=0$ for a finite time interval

$$
H_{u}=p_{1}(t)-p_{2}(t)=0 ?
$$

- Thus, during that interval

$$
\begin{aligned}
\frac{d}{d t} H_{u} & =\dot{p}_{1}(t)-\dot{p}_{2}(t) \\
& =-x_{1}(t)+p_{1}(t)=0
\end{aligned}
$$

- Note that H is not an explicit function of time, so H is a constant for all time

$$
H=\frac{1}{2} x_{1}(t)^{2}+p_{1}(t) x_{2}(t)+\left[p_{1}(t)-p_{2}(t)\right] u(t)=C
$$

but can now substitute from above along the singular arc

$$
\frac{1}{2} x_{1}(t)^{2}+x_{1}(t) x_{2}(t)=C
$$

which gives a family of singular arcs in the state x_{1}, x_{2}

- To find the appropriate control to stay on the arc, use

$$
\frac{d^{2}}{d t^{2}}\left(H_{u}\right)=-\dot{x}_{1}+\dot{p}_{1}=-\left(x_{2}(t)+u(t)\right)-x_{1}(t)=0
$$

or that $u(t)=-\left(x_{1}(t)+x_{2}(t)\right)$ which is a linear feedback law to use along the singular arc.

- Consider the min time-fuel problem for the general system

$$
\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}
$$

with $M^{-} \leq u_{i} \leq M^{+}$and

$$
J=\int_{0}^{t_{f}}\left(1+\sum_{i=1}^{m} c_{i}\left|u_{i}\right|\right) d t
$$

t_{f} is free and we want to drive the state to the origin

- We studied this case before, and showed that

$$
H=1+\sum_{i=1}^{m}\left(c_{i}\left|u_{i}\right|+\mathbf{p}^{T} B_{i} u_{i}\right)+\mathbf{p}^{T} A \mathbf{x}
$$

- On a singular arc, $\frac{d^{k}}{d t^{k}}\left(H_{u}\right)=0 \Rightarrow$ coefficient of u in H is zero

$$
\Rightarrow \mathbf{p}^{T}(t) B_{i}= \pm c_{i}
$$

for non-zero period of time and

$$
\frac{d^{k}}{d t^{k}}\left(\mathbf{p}^{T}(t) B_{i}\right)=\left(\frac{d^{k} \mathbf{p}(t)}{d t^{k}}\right)^{T} B_{i}=0 \quad \forall k \geq 1
$$

- Recall the necessary conditions $\dot{\mathbf{p}}^{T}=-H_{\mathrm{x}}=-\mathbf{p}^{T} A$, which imply

$$
\begin{aligned}
\ddot{\mathbf{p}}^{T} & =-\dot{\mathbf{p}}^{T} A=\mathbf{p}^{T} A^{2} \\
\dddot{\mathbf{p}}^{T} & =-\ddot{\mathbf{p}}^{T} A=-\mathbf{p}^{T} A^{3} \\
\vdots & \\
\left(\frac{d^{k} \mathbf{p}(t)}{d t^{k}}\right)^{T} & \equiv(-1)^{k} \mathbf{p}^{T} A^{k}
\end{aligned}
$$

and combining with the above gives

$$
\left(\frac{d^{k} \mathbf{p}(t)}{d t^{k}}\right)^{T} B_{i}=(-1)^{k} \mathbf{p}^{T} A^{k} B_{i}=0
$$

- Rewriting these equations yields the conditions that

$$
\begin{aligned}
\mathbf{p}^{T} A B_{i} & =0, \quad \mathbf{p}^{T} A^{2} B_{i}=0, \\
& \Rightarrow \mathbf{p}^{T} A\left[\begin{array}{llll}
B_{i} & A B_{i} & \cdots & A^{n-1} B_{i}
\end{array}\right]=0
\end{aligned}
$$

- There are three ways to get:

$$
\mathbf{p}^{T} A\left[\begin{array}{llll}
B_{i} & A B_{i} & \cdots & A^{n-1} B_{i}
\end{array}\right]=0
$$

- On a singular arc, we know that $\mathbf{p}(t) \neq 0$ so this does not cause the condition to be zero.
- What if A singular, and $\mathbf{p}(t)^{T} A=0$ on the arc?
- Then $\dot{\mathbf{p}}^{T}=-\mathbf{p}^{T} A=0$. In this case, $\mathbf{p}(t)$ is constant over $\left[t_{0}, t_{f}\right]$
- Indicates that if the problem is singular at any time, it is singular for all time.
- This also indicates that \mathbf{u} is a constant.
- A possible case, but would be unusual since it is very restrictive set of control inputs.
- Third possibility is that $\left[\begin{array}{llll}B_{i} & A B_{i} & \cdots & \left.A^{n-1} B_{i}\right] \text { is singular, meaning }\end{array}\right.$ that the system is not controllable by the individual control inputs.
- Very likely scenario - most common cause of singularity conditions.
- Lack of controllability by a control input does not necessarily mean that a singular arc has to exist, but it is a possibility.
- For Min Time problems, now $c_{i}=0$, so things are a bit different
- In this case the switchings are at $\mathbf{p}^{T} B_{i}=0$ and a similar analysis as before gives the condition that

$$
\mathbf{p}^{T}\left[\begin{array}{llll}
B_{i} & A B_{i} & \cdots & A^{n-1} B_{i}
\end{array}\right]=0
$$

- Now there are only 2 possibilities
$-\mathbf{p}=0$ is one, but in that case,

$$
H=1+\mathbf{p}^{T}(A \mathbf{x}+B \mathbf{u})=1
$$

but we would expect that $H=0$

- Second condition is obviously the lack of controllability again.

- Summary (Min time):

- If the system is completely controllable by B_{i}, then u_{i} can have no singular intervals
- Not shown, but if the system is not completely controllable by B_{i}, then u_{i} must have a singular interval.
- Summary (Min time-fuel):
- If the system is completely controllable by B_{i} and A is non-singular, then there can be no singular intervals
- Consider systems that are nonlinear in the state, but linear in the control

$$
\dot{\mathbf{x}}(t)=\mathbf{a}(\mathbf{x}(t))+\mathbf{b}(\mathbf{x}(t)) \mathbf{u}(t)
$$

with cost

$$
J=\int_{t_{0}}^{t_{f}} \mathbf{g}(\mathbf{x}(t)) d t
$$

- For a singular arc, in general you will find that

$$
\frac{d^{k}}{d t^{k}}\left(H_{u_{i}}\right)=0 \quad k=0, \ldots, r-1
$$

but these conditions provide no indication of the control required to keep the system on the singular arc

- i.e. the coefficient of the control terms is zero.
- But then for some r and $i, \frac{d^{r}}{d t^{r}}\left(H_{u_{i}}\right)=0$ does retain u_{i}.
- So if $\mathbf{u}_{j}(\mathbf{x}, \mathbf{p})$ are the other control inputs, then

$$
\frac{d^{r}}{d t^{r}}\left(H_{u_{i}}\right)=C\left(\mathbf{x}, \mathbf{p}, \mathbf{u}_{j}(\mathbf{x}, \mathbf{p})\right)+D\left(\mathbf{x}, \mathbf{p}, \mathbf{u}_{j}(\mathbf{x}, \mathbf{p})\right) u_{i}=0
$$

with $D \neq 0$, so the condition does depend on u_{i}.

- Then can define the appropriate control law to stay on the singular arc as

$$
u_{i}=-\frac{C\left(\mathbf{x}, \mathbf{p}, \mathbf{u}_{j}(\mathbf{x}, \mathbf{p},)\right)}{D\left(\mathbf{x}, \mathbf{p}, \mathbf{u}_{j}(\mathbf{x}, \mathbf{p},)\right)}
$$

- Properties of this solution are:
$-r \geq 2$ is even
- Singular surface of dimension $2 n-r$ in space of (\mathbf{x}, \mathbf{p}) in general, but $2 n-r-1$ if t_{f} is free (additional constraint that $H(t)=0$)
- Additional necessary condition for the singular arc to be extremal is that:

$$
(-1)^{r / 2} \frac{\partial}{\partial u_{i}}\left[\frac{d^{r}}{d t^{r}} H_{u}\right] \geq 0
$$

- Note that in the example above,

$$
\frac{\partial}{\partial u_{i}}\left[\frac{d^{r}}{d t^{r}} H_{u}\right] \sim D
$$

- Goddard problem: thrust program for maximum altitude of a sounding rocket [Bryson and Ho, p. 253]. Given the EOM:

$$
\begin{aligned}
\dot{v} & =\frac{1}{m}[F(t)-D(v, h)]-g \\
\dot{h} & =v \\
\dot{m} & =\frac{-F(t)}{c}
\end{aligned}
$$

where g is a constant, and drag model is $D(v, h)=\frac{1}{2} \rho v^{2} C_{d} S e^{-\beta h}$

- Problem: Find $0 \leq F(t) \leq F_{\max }$ to maximize $h\left(t_{f}\right)$ with $v(0)=$ $h(0)=0$ and $m(0), m\left(t_{f}\right)$ are given
- The Hamiltonian is

$$
H=p_{1}\left(\frac{1}{m}[F(t)-D(v, h)]-g\right)+p_{2} v-p_{3} \frac{F(t)}{c}
$$

and since $v\left(t_{f}\right)$ is not specified and we are maximizing $h\left(t_{f}\right)$,

$$
p_{2}\left(t_{f}\right)=-1 \quad p_{1}\left(t_{f}\right)=0
$$

- Note that $H(t)=0$ since the final time is not specified.
- The costate EOM are:

$$
\dot{\mathbf{p}}=\left[\begin{array}{rrr}
\frac{1}{m} \frac{\partial D}{\partial v} & -1 & 0 \\
\frac{1}{m} \frac{\partial D}{\partial h} & 0 & 0 \\
\frac{F-D}{m^{2}} & 0 & 0
\end{array}\right] \mathbf{p}
$$

- H is linear in the controls, and the minimum is found by minimizing $\left(\frac{p_{1}}{m}-\frac{p_{3}}{c}\right) F(t)$, which clearly has 3 possible solutions:

$$
\begin{array}{cr}
F=F_{\max } & \left(\frac{p_{1}}{m}-\frac{p_{3}}{c}\right)<0 \\
0<F<F_{\max } & \text { if } \\
F=0 & \left(\frac{p_{1}}{m}-\frac{p_{3}}{c}\right)=0 \\
F= & \left(\frac{p_{1}}{m}-\frac{p_{3}}{c}\right)>0
\end{array}
$$

- Middle expression corresponds to a singular arc.
- Note: on a singular arc, must have $H_{u}=p_{1} c-p_{3} m=0$ for finite interval, so then $\dot{H}_{u}=0$ and $\ddot{H}_{u}=0$, which means

$$
\left(\frac{\partial D}{\partial v}+\frac{D}{c}\right) p_{1}-m p_{2}=0
$$

and

$$
\begin{align*}
F=D+m g & +\frac{m}{D+2 c \frac{\partial D}{\partial v}+c^{2} \frac{\partial^{2} D}{\partial v^{2}}} \tag{10.16}\\
& {\left[-g\left(D+c \frac{\partial D}{\partial v}\right)+c(c-v) \frac{\partial D}{\partial h}-v c^{2} \frac{\partial^{2} D}{\partial v \partial h}\right] }
\end{align*}
$$

which is a nonlinear feedback control law for thrust on a singular arc.

- For this particular drag model, the feedback law simplifies to:

$$
F=D+m g+\frac{m g}{1+4(c / v)+2(c / v)^{2}}\left[\frac{\beta c^{2}}{g}\left(1+\frac{v}{c}\right)-1-2 \frac{c}{v}\right]
$$

and the singular surface is: $m g=\left(1+\frac{v}{c}\right) D$

- Constraints $H(t)=0, H_{u}=0$, and $\dot{H}_{u}=0$ provide a condition that defines a surface for the singular arc in v, h, m space:

$$
\begin{equation*}
D+m g-\frac{v}{c} D-v \frac{\partial D}{\partial v}=0 \tag{10.17}
\end{equation*}
$$

- It can then be shown that the solution typically consists of 3 arcs:

1. $F=F_{\max }$ until 10.17 is satisfied.
2. Follow singular arc using 10.16 feedback law until $m(t)=m\left(t_{f}\right)$.
3. $F=0$ until $v=0$.
which is of the form "bang-singular-bang"

Figure 10.1: Goddard Problem

Figure 10.2: Goddard Problem

Figure 10.3: Goddard Problem

