MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

16.323 Midterm \#1

This is a closed-book exam, but you are allowed 1 page of notes (both sides).

You have 1.5 hours.

There are three $\mathbf{3}$ questions of equal value.

Hint: To maximize your score, initially give a brief explanation of your approach before getting too bogged down in the equations.

1. For the following cost function, $F=x^{2}+y^{2}-6 x y-4 x-5 y$
(a) Minimize the cost subject to the constraints,

$$
\begin{gathered}
f_{1}:-2 x+y+1 \geq 0 \\
f_{2}: x+y-4 \leq 0
\end{gathered}
$$

(b) How is the optimal cost affected if the constraint f_{1} is changed to,

$$
f_{1}^{\prime}=-2 x+y+1.1 \geq 0
$$

Estimate this difference and explain your answer.
2. The first order discrete system,

$$
x_{k+1}=x_{k}+u_{k}
$$

is to be transferred to the origin in two stages $\left(x_{2}=0\right)$. The performance measure to be minimized is,

$$
J=\sum_{k=0}^{1}\left(\left|x_{k}\right|+5\left|u_{k}\right|\right)
$$

The possible state and control values are:

$$
\begin{gathered}
x_{k} \in\{3,2,1,0,-1,-2,-3\} \\
u_{k} \in\{2,1,0,-1,-2\}
\end{gathered}
$$

(a) Use dynamic programming to determine the optimal control law and the associated cost for each possible value of x_{0}.
(b) Use the results from (a) to determine the optimal control sequence $\left\{u_{0}^{*}, u_{1}^{*}\right\}$ for the initial state $x_{0}=-2$.
3. Consider a disturbance rejection problem that minimizes:

$$
\begin{equation*}
J=\frac{1}{2} \mathbf{x}\left(t_{f}\right)^{T} H \mathbf{x}\left(t_{f}\right)+\frac{1}{2} \int_{t_{0}}^{t_{f}} \mathbf{x}^{T}(t) R_{\mathbf{x x}}(t) \mathbf{x}(t)+\mathbf{u}(t)^{T} R_{\mathrm{uu}}(t) \mathbf{u}(t) d t \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=A(t) \mathbf{x}(t)+B(t) \mathbf{u}(t)+\mathbf{w}(t) \tag{2}
\end{equation*}
$$

To handle the disturbance term, the optimal control should consist of both a feedback term and a feedforward term (assume $\mathbf{w}(t)$ is known).

$$
\begin{equation*}
\mathbf{u}^{\star}(t)=-K(t) \mathbf{x}(t)+\mathbf{u}_{f w}(t) \tag{3}
\end{equation*}
$$

Using the Hamilton-Jacobi-Bellman equation, show that a possible optimal value function is of the form

$$
\begin{equation*}
J^{\star}(\mathbf{x}(t), t)=\frac{1}{2} \mathbf{x}^{T}(t) P(t) \mathbf{x}(t)+b^{T}(t) \mathbf{x}(t)+\frac{1}{2} c(t) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
K(t)=R_{u u}^{-1}(t) B^{T}(t) P(t), \quad \mathbf{u}_{f w}=-R_{u u}^{-1}(t) B^{T}(t) b(t) \tag{5}
\end{equation*}
$$

In the process demonstrate that the conditions that must be satisfied are:

$$
\begin{aligned}
-\dot{P}(t) & =A^{T}(t) P(t)+P(t) A(t)+R_{\mathrm{xx}}(t)-P(t) B(t) R_{\mathrm{uu}}^{-1}(t) B^{T}(t) P(t) \\
\dot{b}(t) & =-\left[A(t)-B(t) R_{\mathrm{uu}}^{-1}(t) B^{T}(t) P(t)\right]^{T} b(t)-P(t) \mathbf{w}(t) \\
\dot{c}(t) & =b^{T}(t) B(t) R_{\mathrm{uu}}^{-1}(t) B^{T}(t) b(t)-2 b^{T}(t) \mathbf{w}(t)
\end{aligned}
$$

with boundary conditions: $P\left(t_{f}\right)=H, b\left(t_{f}\right)=0, c\left(t_{f}\right)=0$.

