MIT OpenCourseWare
http://ocw.mit.edu

16.323 Principles of Optimal Control

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

April 11, 2007

16.323 Final Exam

This is a closed-book exam, but you are allowed 3 pages of notes (both sides). You have 3 hours. There are six 6 questions with the relative values clearly marked.

Some handy formulas:

$$
\begin{gathered}
\mathbf{u}^{\star}(t)=\arg \left\{\min _{\mathbf{u}(t) \in \mathcal{U}} H(\mathbf{x}, \mathbf{u}, \mathbf{p}, t)\right\} \\
A^{T} P_{s s}+P_{s s} A+R_{\mathrm{xx}}-P_{s s} B_{u} R_{\mathrm{uu}}^{-1} B_{u}^{T} P_{s s}=0 \\
K_{s s}=R_{\mathrm{uu}}^{-1} B_{u}^{T} P_{s s} \\
\lambda_{i}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\frac{a+d \pm \sqrt{a^{2}-2 a d+d^{2}+4 b c}}{2}
\end{gathered}
$$

(i) $\quad P_{N}=H$
(ii) $F_{k}=-\left[R_{k}+B_{k}^{T} P_{k+1} B_{k}\right]^{-1} B_{k}^{T} P_{k+1} A_{k}$
(iii) $P_{k}=Q_{k}+F_{k}^{T} R_{k} F_{k}+\left\{A_{k}+B_{k} F_{k}\right\}^{T} P_{k+1}\left\{A_{k}+B_{k} F_{k}\right\}$

1. (15%) Consider a model of a first order unstable plant with the state equation

$$
\dot{x}(t)=a x(t)-a u(t) \quad a>0
$$

and a new cost functional

$$
J=\int_{0}^{\infty} e^{2 b t}\left[x^{2}(t)+\rho u^{2}(t)\right] d t \quad \quad \rho>0, b \geq 0
$$

It can be shown that, with a change of variables in the system to $e^{b t} x(t) \rightarrow \tilde{x}(t)$ and $e^{b t} u(t) \rightarrow \tilde{u}(t)$, then the only real modification required to solve for the static LQR controller with this cost functional is to use $A+b I$ in the algebraic Riccati equation instead of A.
(a) Given this information, determine the LQR gain K as a function of ρ, a, b.
(b) Determine the location of the closed-loop poles for $0<\rho<\infty$
(c) Use these results to explain what the primary effect of b is on this control design.
2. (15\%) Given the optimal control problem for a scalar nonlinear system:

$$
\begin{aligned}
\dot{x} & =x u \quad x(0)=1 \\
J(u) & =x(1)^{2}+\int_{0}^{1}(x(t) u(t))^{2} d t
\end{aligned}
$$

find the optimal feedback strategy by solving the associated HJB equation. Hint: show that the HJB differential equation admits a solution of the form $J^{\star}=p(t) x(t)^{2}$.
3. (15%) For the system given by the dynamics:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+u \\
& \dot{x}_{2}=u
\end{aligned}
$$

with $|u(t)| \leq 1$, find the time optimal controller that drives the system to the origin $x_{1}=x_{2}=0$. In your solution, clearly state:

- The switching law,
- Show the switching lines,
- \quad Sketch the system response for $x_{1}(0)=x_{2}(0)=1$.

4. (15%) Consider the following discrete system:

$$
x_{k+1}=x_{k}-0.4 x_{k}^{2}+u_{k}
$$

Assume that the state space is quantized to be $(0,0.5,1)$, and the control is quantized to be ($-0.4,-0.2,0,0.2,0.4$). The cost to be minimized is

$$
J=4\left|x_{2}\right|+\sum_{k=0}^{1}\left|u_{k}\right|
$$

Use dynamic programming to find the optimal control sequence and complete the following tables. If in the process you find a state that is not at the quantized value, assign it the nearest quantized value.

x_{0}	$J_{0,2}^{\star}\left(x_{0}\right)$	u_{0}^{\star}
0.0		
0.5		
1.0		

x_{1}	$J_{1,2}^{\star}\left(x_{1}\right)$	u_{1}^{\star}
0.0		
0.5		
1.0		

Use these results to find the optimal control sequence if the initial state is $x_{0}=1$.
5. (20%) Optimal control of linear systems:
(a) Given the linear system

$$
\dot{x}=-x+u
$$

with $x(0)=1$ and $x(1)=1$, find the controller that optimizes the cost functional

$$
J=\frac{1}{2} \int_{0}^{1}\left(3 x^{2}+u^{2}\right) d t
$$

Please solve this problem by forming the Hamiltonian, solve the differential equations for the state/costate, and then use these to provide the control law, which you should write as an explicit function of time.
(b) Consider the following system:

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+u \\
\dot{x}_{2} & =-2 x_{2} \\
\text { with } J & =\int_{0}^{\infty}\left(x_{2}^{2}(t)+u^{2}(t)\right) d t
\end{aligned}
$$

- Comment on the stabilizability and detectability of this system.
- Find the optimal steady state regulator feedback law for the system. Why does this answer make sense?
- Given $x(0)=\left[\begin{array}{ll}1 & 1\end{array}\right]$ what is the minimum value of the initial cost?

6. (20%) LQG control for an unstable system: Consider the unstable second order system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{2}+u+w
\end{aligned}
$$

with the continuous measurements

$$
y=x_{1}+v
$$

where w and v are zero-mean white noise processes with spectral densities R_{ww} and R_{vv} respectively and the performance index is

$$
J=\int_{0}^{\infty}\left(R_{\mathrm{xx}} x_{1}^{2}+R_{\mathrm{uu}} u^{2}\right) d t
$$

You analyzed this system in Homework \#3 and showed that for $R_{\mathrm{xx}} / R_{\mathrm{uu}}=1$ the steadystate LQR gains are $K=\left[\begin{array}{ll}1 & \sqrt{3}+1\end{array}\right]$ and the closed-loop poles are at $s=-(\sqrt{3} \pm j) / 2$.
(a) Sketch by hand the locus of the estimation error poles versus the ratio $R_{\mathrm{ww}} / R_{\mathrm{vv}}$ for the steady-state LQE case. Show the pole locations for the noisy sensor problem.
(b) For $R_{\mathrm{ww}} / R_{\mathrm{vv}}=1$ show analytically that the steady-state LQE gains are

$$
L=\left[\begin{array}{l}
\sqrt{3}+1 \\
\sqrt{3}+2
\end{array}\right]
$$

and that the closed-loop poles are at $s=-(\sqrt{3} \pm j) / 2$.
(c) Find the transfer function of the corresponding steady state LQG compensator.
(d) As best as possible, provide a classical explanation of this compensator and explain why it is a good choice for this system.

