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16.323 Handout #4 
Prof. J. P. How March 20, 2007 

Due: April 10, 2007 

16.323 Homework Assignment #4 

1. The derivation on pages 6–1 – 6–2 was done for the case of free or fixed x(tf ) and then 
repeated on 6–3 for more general boundary condition m(x(tf ), tf ) = 0. 

(a) Use the result on 6–3 to derive an optimal controller for the same case as Example 
6–1 (on page 6–5) but with terminal constraints that ẏ(tf ) = 0 and 

y 2(tf ) + (tf − 5)2 − 4 = 0 

(b) Use fsolve (as on 5–18) to solve for the unknown parameters (there should be 5) 
in the control problem, and then use a simulation of the system to confirm that 
the control inputs cause the system to reach the target set at the appropriate tf . 

(i) Consider two cases: (a) α = 0.1, b = 1; and (b) α = 100, b = 1. 

2. Show that if in the Hamiltonian	H, a and g are independent of time t, then H is a 
constant, and that if tf is free and h is not an explicit function of time, then this 
constant is zero. This is an important result that can often be used to help solve the 
control problems. 

3. Read the posted article by Betts “Survey of numerical methods for.	 trajectory opti
mization,” AIAA J. of Guidance,. Control and Dynamics, 21:193-207, 1998, and write 
a 1 page summary of his suggestions/conclusions. 

4. We discussed in class that LQR is a great	 regulator in that it quickly returns the 
system states to 0 while balancing the amount of control used. However, we are also 
interested in tracking a reference command, so that y(t) = r(t) as t →∞. 

(a) Design a steady state LQR controller for the system using Rxx = I2, Ruu = 0.01 ⎡ ⎤ � � 
1 1 1 � � 

ẋ = ⎣ ⎦ x + u y = 1 0 x 
1 2 0 

A naive way to implement a reference tracker is to modify the LQR controller 
from u = −Kx to u = r − Kx: 

ẋ = (A − BK)x + Br , y = Cx 

Verify that this leads to particularly poor tracking of a step input! 
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(b) An alternative strategy is to use	u = Nr − Kx, where N is a constant. What 
is a good way to choose N to ensure zero steady state error for this closed-loop 
system? What are the consequences of this change in the step response of the 
closed-loop system? 

(c) A completely different approach to ensuring zero steady-state error is to use what 
is often called an LQ-servo. The approach is to add a new state to the system 
that integrates the tracking error: ẋi = r − y = r − Cx, giving: � � ⎡ ⎤ � � � � � � 

ẋ A 0 x B 0 
=	 ⎣ ⎦ + u + r 

ẋi −C 0 xi 0 1 

x 
y = C 0 

xi 

The LQR problem statement can now be modified (ignore r in the design of u) 
to place a high weighting on xi to penalize the tracking error. Use this technique 
to design a new controller (keep Rxx and Ruu the same as part(a) and tune the 
weight on xi to achieve a performance that is similar to part (b)). Compare the 
transient responses for the approaches in (b) and (c) - do you see any advantages 
to one approach over the other? 

5. Consider the optimal control of thrust vector direction that maximizes the terminal 
velocity of the space launch vehicle in the rectilinear frame. The vehicle dynamics (see 
figure) is represented as 

u̇ = a cos β 

v̇ = a sin β 

ẋ = u 

ẏ = v 

where (x, y) and (u, v) denote the position and the velocity of the rocket with respect 
to an rectilinear inertial frame. The thrust acceleration a is assumed to be a known 
function of time. The boundary conditions are given as: 

u(t0) = v(t0) = x(t0) = y(t0) = 0, 

v(tf ) = 0, y(tf ) = h. 

Also, the terminal time tf is given and h is the altitude of the target orbit. 

(a) Show that the optimal control law takes the form of 

tan β = tan β0 − c t	 (1) 

where β0 and c are constant. This law is referred to as linear tangent law. 

(b) What happens if there exists the gravity described as: 

v̇ = a sin θ − g	 (2) 

with g being constant? 
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Figure 1: Figure for Problem 4 

(c) Use the numerical methods discussed in class to find the optimal control inputs 
and resulting path when g = 0, h = 5000m, a = 2m/s, and tf = 200sec. Compare 
the numerical and analytic solutions. 
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Figure by MIT OpenCourseWare.


