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In this recitation, we consider controllability and observability, as well as the assumptions 
on the LQR formulation and how to solve it by hand. 

1 Controllability and Observability 

Consider the following state space model: 

ẋ = Ax + Bu

y = Cx


0 1 0 0 2 1 
A = , B = , C = . −8 −6 1 1 −4 −2 

We are interested in determining whether this model is controllable and/or observable. 
First, let’s compute the transfer function matrix; since there are two inputs and two 

outputs, we expect the transfer function matrix to be a 2 × 2 matrix. 

G(s) = C(sI − A)−1B � 
2 1 

� � 
s −1 

�−1 � 
0 0 

� 

= −4 −2 8 s + 6 1 1 � �� � ��� � 
2 1 1 s + 6 1 0 0 

= 
s(s + 6) + 8 s 1 1−4 −2 � � � 

−8 � � � 
1 2 1 s + 6 1 0 0 

= 
s2 + 6s + 8 −4 −2 −8 s 1 1 � � � � 

1 2 1 1 1 
= 

(s + 2)(s + 4) −4 −2 s s 

1 s + 2 s + 2 
= 

(s + 2)(s + 4) −2(s + 2) −2(s + 2) 

1 1 1 
= . 

s + 4 −2 −2 

Note the pole-zero cancellation that took place at s = −2; we should expect this to show up 
as a loss of either controllability or observability. 
First, let’s compute the controllability matrix Mc: 

0 0 1 1 Mc = [ B AB ] = 
1 1 −6 −6 . 

For the system to be controllable, Mc must have full rank. Keep in mind that an a × b 
matrix M (where a =� b) is considered to have full rank if rank(M) = min{a, b}. So all we 
need is for Mc to have rank 2 - which it does. Thus the system is controllable. 
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Next, let’s compute the observability matrix Mo: ⎡ ⎤ � � 2 1 

= 
C 

= ⎢⎣ 
−4 −2 ⎥⎦ .Mo CA	 −8 −4 
16 8 

For the system to be observable, Mo must have rank 2. Yet we can see that all rows of Mo 

are multiples of each other, and thus rank(Mo) = 1 < 2. Thus this system is not observable. 
We know that a pole-zero cancellation occurred at s = −2, so let’s investigate the con

trollability and observability of the mode it corresponds to. We can find the left eigenvector 
wT corresponding to s = −2 by solving the system of equations wT (sI − A) = 0. Letting 

T 
w = [ w1 w2 ] and plugging in s = −2, we have 

[ w1 w2 ] 
−2 −1 

= [ 0 0 ]
8 −2 + 6 

[ w1 w2 ] 
−2 −1 

= [ 0 0 ]⇒	
8 4 

−2w1 + 8w2 = 0 ⇒ −w1 + 4w2 = 0 

4 
w = .⇒

1 

Remember that when computing eigenvectors, this resulting system of equations should al
ways be rank deficient; and thus any multiple of the w given above is also valid. To analyze 
the controllability of the mode, we compute 

w T B = [ 4 1 ] 
0 0 

= [ 1 1 ] .
1 1 

Both elements of the resulting vector are non-zero; thus the mode is controllable. 
Finally, we can find the right eigenvector v corresponding to s = −2 by solving the system 

T
of equations (sI − A)v = 0. Letting v = [ v1 v2 ] and plugging in s = −2, we have � � � � � � 

−2 −1 v1 0 
= 

8 4 v2 0 

−2v1 − v2 = 0 ⇒ 
8v1 + 4v2 =	 0 

1 
v = .⇒ −2 

To analyze the observability of the mode, we compute � � � � � � 
2 1 1 0

Cv =	 = . −4 −2 −2 0 

Since this returns the zero vector, the mode is unobservable. 
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2 Linear Quadratic Regulator (LQR) 

The linear quadratic regulator (LQR) provides an effective way to apply full-state feedback 
to a system such that some desired balance is achieved between the state errors and control 
effort. By using LQR, you no longer have to deal with where exactly to place poles; instead, 
by specifying weights on the states and inputs, the closed-loop poles are chosen for you, in 
order to minimize a specific cost function. 
In recitation today, we talked about the assumptions you can apply to LQR to help you 

solve for the optimal gain (Section 2.2), and worked through an example by hand (Section 
2.3). First, though, let’s recap the LQR formulation (Section 2.1). 

2.1 Formulation 

Consider the system 

ẋ = Ax + Bu; 

the objective in LQR is to place the pole locations such that the closed-loop system optimizes 
the cost function 

∞ �	 � 
J = x T Qx + u T Ru dt, 

0 

where Q is the weight on the state cost and R is the weight on the input cost. Alternatively, 
you could specify an output z = Czx for which you would like to minimize cost, rather 

T CT ˜than the full state; the term xT Qx is then replaced with x z QCzx. You then have that 
˜Q = CT QCz. The optimal controller takes the form u = −Kx, where z 

K = R−1BT P ; 

P	 is then found by solving the algebraic Riccati equation 

0 = AT P + PA + Q − P BR−1BT P. 

Note that this is a matrix quadratic equation. 

2.2 Assumptions 

To use LQR correctly, several assumptions must be satisfied. Before specifying those as
sumptions, a few definitions are necessary. 

Definition 1. A matrix M is positive definite (M � 0) if xT Mx > 0 for all x = 0. �

Definition 2. A matrix M is positive semidefinite (M � 0) if xT Mx ≥ 0 for all x. 

In practice, applying the definition directly is one of the hardest ways to determine whether 
a matrix is positive definite or positive semidefinite. Fortunately, there are several rules you 
can use to simplify this process. A few are given below. 

Theorem 3. The following properties are equivalent to a matrix M being positive definite: 
•	 All eigenvalues of M are positive. 
•	 (Sylvester’s criterion) All of the leading principal minors are positive. What this means 
is for an n × n matrix: the upper-left 1 × 1 corner of M has a positive determinant, the 
upper-left 2 × 2 corner of M has a positive determinant, . . ., and the upper-left n × n 
corner of M (i.e. M itself) has a positive determinant. 
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Theorem 4. The following properties are equivalent to a matrix M being positive semidef
inite: 

All eigenvalues of M are non-negative. • 
(Sylvester’s criterion) All of the leading principal minors are non-negative. • 

With all that out of the way, what assumptions do we need to apply to LQR? 

1. The matrix Q must be positive semidefinite, i.e. Q � 0 . This assumption ensures the 
state is driven to 0, because otherwise a state error might actually decrease the cost, which 
is desirable for this minimization. If z = Czx is used, we typically assume that Q̃ � 0. 

2. The matrix R must be positive definite, i.e. R � 0 . This ensures that there is always a 
penalty for applying control effort. 

3. The solution P to the algebraic Riccati equation is always symmetric, such that P T = P . 
This simplifies the math involved in solving for P . 

4. If (A, B, Cz) is stabilizable and detectable, then the correct solution of the algebraic 

Riccati equation is the unique solution P for which P � 0. Since the equation is quadratic, 
you will probably get several possible solutions for P , so this assumption tells you which 
one to pick. 

5. If (A, B, Cz) is also observable, then P � 0 . 

2.3 Example 

The LQR problem we considered in recitation ended up being too messy to really solve by 
hand, so we consider a simpler problem below. Note that in general, solving even a simple 
LQR problem by hand can be hard for a 2-state system, and becomes exceedingly difficult for 
larger systems. Luckily, Matlab can give us the desired gain right away via lqr(A,B,Q,R). 

A = 
−1 0 

, B =
1 

, Q = 
1 0 

, R = [ 1 ]−1 0 0 0 1 

Note that Q � 0 Q � 0 and R � 0. Furthermore, (A, B) is controllable, and we can pick ⇒
Cz appropriately such that (A, Cz) is observable; thus we are looking for the unique solution 
P � 0 to the algebraic Riccati equation. 
We write out P symbolically as � � 

a b
P = ,

b c 

where a, b, and c are variables we need to solve for. Note that we’ve made P symmetric by 
construction. 
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First, let’s write out the components of the algebraic Riccati equation one at a time: � � � � � � � � 

AT P + PA = 
−1 −1 a b 

+ 
a b −1 0 

0 0 b c b c −1 0 

−2a − 2b −b − c 
= −b − c 0 

1 0
Q = 

0 1 � � � � � � 

−P BR−1BT P = − 
a
b c

b 
0
1 

1

1
[ 1 0 ] 

a
b c

b 

� � � � � � 
a b 1 0 a b 

= − 
b c 0 0 b c � � � � 
a b a b 

= − 
b c 0 0 

a2 ab 
= − 

ab b2 

Note that each component is itself symmetric. Let’s combine all three together! 

0 = AT P + PA + Q − P BR−1BT P = 
−2a − 2b −b − c 

+ 
1 0 a2 ab 

−b − c 0 0 1 − 
ab b2 

−2a − 2b + 1 − a2 −b − c − ab 0 0 
= = . −b − c − ab 1 − b2 0 0 

This yields three unique equations with three unknowns: � 20 = −2a − 2b + 1 − a
0 = −b − c − ab 
0 = 1 − b2 

From the third equation, we have b = ±1. Plugging into the first equation for the case of 
b = 1: 

a 2 + 2a + (2b − 1) = a 2 + 2a + 1 = (a + 1)2 = 0 ⇒ a = −1. 

But this value of a violates Sylvester’s criterion for positive definiteness, so it can’t be correct. 
Instead, try b = −1: 

a 2 + 2a + (2b − 1) = a 2 + 2a − 3 = (a + 3)(a − 1) = 0 ⇒ a = −3 or 1. 

Since we want a > 0, pick a = 1. Finally, from the second equation, we have 

c = −b − ab = −(−1) − (1)(−1) = 1 + 1 = 2. 

We’ve solved for all three variables; thus 

1 −1
P = . −1 2 

It’s easily verified that P � 0. 
The last step is to actually solve for the gain: 

K = R−1BT P =
1

1
[ 1 0 ] −

1
1 

−
2
1 

= [ 1 −1 ] . 
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