
16.30/31, Fall 2010 — Recitation # 2 

September 22, 2010 

In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. 
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Figure 1: The standard block diagram for a unit-feedback loop. 

Problem 1 (VDV 8.14) 

If Figure 1 models a radar tracking system with G = 1/[(0.1s + 1)s], design series compen
sation to meet the following specifications: 

1. The steady-state error following ramp inputs must not exceed 2%. 
2. The error in response to sinusoidal inputs up to 5 rad/sec should not exceed about 5%. 
3. The crossover frequency should be about 50 rad/sec to meet bandwidth requirements 

while limiting the response to high-frequency noise. 
4. The ratio of the break frequencies of Gc should not exceed 5 to limit noise effects. 
5. The phase margin should be about 50◦. 

Solution — The very first thing we should do is check closed-loop stability. A quick root 
locus sketch will reveal that the closed-loop system is stable for all positive gains, i.e., it is 
stable for Gc(s) = K, for K > 0. For simplicity, we can choose K = 1 to get a baseline 
stabilizing controller. 
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Figure 2: Root locus sketch




Just for practice, let us figure out where the closed-loop poles would be for K = 1, us
ing root-locus techniques. First of all, write the transfer function in root-locus form, i.e., 

1G(s) = 10 
s(s+10) . Applying the magnitude condition, for Gc = K = 1, we know that the 

closed-loop poles will be at locations that satisfy |s| · |s + 10| = 10. Let us check whether the 
closed-loop poles would be on the part of the root locus lying on the real axis. In such a case, s 
would be a negative real number, and the magnitude condition would read −s(s+10) = 10K, 
i.e., s2 + 10s + 10 = 0, which has the two roots s = −5 ±

√
25 − 10 = {−8.8730, −1.1270}. 

Let us sketch the Bode plot of such a system (recall we chose Gc = 1 for the time being, 
for convenience). The straight-line approximation is shown in Figure 3. Since we have an 
integrator, the magnitude Bode plot starts with a negative “unit” slope (i.e., -20dB/decade). 
It will cross the line ω = 1 at K = 1. The effect of the pole at s = 10 is to decrease the 
slope to -40 dB/decade, starting at the break frequency ω = 10. The phase will start at 
-90 degrees for low frequencies (because of the integrator), be equal to -135 degrees at the 
pole break frequency ω = 10, and will ultimately approach -180 degrees at high frequencies 
(because of the additional pole). Since the phase never drops below -180 degrees, the phase 
margin will always be positive—but will be small if crossover occurs at high frequencies. 
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Figure 3: Bode plot for the baseline stabilizing controller 

Having established closed-loop stability, let us take a look at the design requirements, one 
by one. 

1. The steady-state error following ramp inputs must not exceed 2%. 

This requirements says that the system must be of Type 1, i.e., L(s) = Gc(s)G(s) must have 
one pole at the origin (i.e., an integrator), and that, furthermore, the Bode-plot gain of L(s) 
must be such that ess = 1/KB ≤ 0.02 (very often, this is called the “velocity gain”). 
Since G(s) already contains a pole at the origin, there is no need to change the structure 

of the compensator Gc(s) = K. However, choosing Gc(s) = 1 would not satisfy the max 
error requirement—we need the compensator gain to be greater than 1/0.02, i.e., K ≥ 50. 
The Bode plot for K = 50 is shown in Figure 4—it is obtained from that in Figure 3 by 
translating the magnitude plot up by log10 50. The phase plot remains unchanged. 
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Figure 4: Bode plot for a proportional controller satisfying specification (1). 

2. The error in response to sinusoidal inputs up to 5 rad/sec should not exceed 
about 5%. 

The error in response to sinusoidal inputs can be evaluated using the frequency response. 
The transfer function from the reference input to the error (often called the sensitivity of 
the system) is given by 

1 
S(s) = . 

1 + L(s) 

In particular, the magnitude of the error in response to a unit-amplitude sinusoid of frequency 
ω is given by |S(jω)| = 1/|1 + L(jω)|. Hence, the specification can be written as 

|1 + L(jω)| ≥ 1/0.05 = 20, for all ω ≤ 5rad/s. 

In order to satisfy this equation, |L(jω)| should be “large” with respect to 1 (roughly, it 
should be around 19-21), hence we approximate this condition as 

|L(jω)| ≥ 20, for all ω ≤ 5rad/s. 

In other words, the magnitude Bode plot of L(s) should stay above the “obstacle” shown 
in Figure 5. 
With the previous design choice, the magnitude Bode plot would indeed hit the obstacle. 

We need to increase the gain in such a way that K/5 ≥ 20, i.e., K ≥ 100. (Notice that 
we are using the straight-line approximation... so the real Bode plot would still violate the 
specification. Still, such an approximation is generally acceptable.) 

The crossover frequency should be about 50 rad/sec to meet bandwidth require
ments while limiting the response to high-frequency noise. 

With the current design (Gc(s) = K = 100, the crossover frequency occurs at approximately 
ωc = 31.623. You can get this by careful drawing, or through simple geometrical arguments 
and calculations: the straight line magnitude plot goes through |L(jω)| = 10 at ω = 10, and 
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Figure 5: Bode plot for a proportional controller satisfying specification (2). 

at that frequency the slope changes to -2, i.e., -40db/decade. In order for the magnitude to 
decrease further by a factor of 10 (i.e., to reach crossover), the frequency must increase by 
a factor of 

√
10 = 3.1623. 

Using similar arguments, one can recognize that the magnitude of the frequency response, 
given the current design, is equal to 10/25=0.4 at the desired crossover frequency. (The 
frequency increases by a factor of 5, hence the magnitude decreases by a factor of 52 = 25 
from the “knee” of the Bode plot.) 
Hence, in order to make sure that the crossover frequency is exactly at 50 rad/s, we need to 

multiply K by a 1/0.4 = 2.5. In other words, choosing K = 250 would satisfy requirements 
1-3. 

4. The ratio of the break frequencies of Gc should not exceed 5 to limit noise 
effects. 

Hmm. We don’t really need a dynamic compensator up to this point. Let’s set this require
ment aside for the time being. 

5.The phase margin should be about 50◦. 

While the choice of Gc = K = 250 satisfies requirements 1-3, the phase margin is very small. 
Using the straight-line approximation, the phase would decrease linearly from -90◦ to −180◦ 

as log10 ω goes from 0 (ω = 1 rad/s) to 2 (ω = 100 rad/s). Hence the phase at the crossover 
frequency ωc = 50rad/s would be about −90 − 90 log10(50)/2 = −166.45◦, yielding a phase 
margin of about 13.5◦. 
Taking a hint from the requirement (4), we can use a lead compensator to increase the 

phase at crossover frequency, i.e., consider a compensator of the form 
s + 1 

Gc(s) = K z . s + 1 
p 

The maximum phase lead we can get is limited by the constraint on the ratio α = p/z of the

break frequencies of the compensator imposed by requirement (4). Using the straight-line
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Figure 6: Bode plot for a proportional controller satisfying specification (3). 

approximation, we know that the phase lead will be 0 degrees one decade below the zero 
break frequency, and will increase linearly with log10 ω at a rate of 45 degrees/decade until 
one decade below the pole break frequency, at which point it will remain flat and eventually 
decrease. In other words, an estimate of the maximum phase lead is φmax = 45◦ log10(5) = 
31.45◦. More accurate calculations, e.g., using the formulas given in class and in the lecture 
notes, yield a max phase lead of about 40◦. 1 

In other words, a lead compensator, if used correctly, could increase the phase margin to 
the 45-50 degrees range, as desired. How do we get the maximum phase lead contribution 
to the phase margin? We can achieve this by placing the midpoint (on a log scale, i.e., 
the geometric mean) of the compensator zero/pole break frequencies exactly at the desired 
crossover frequency. Doing the math, we get 

|z| · |p| = |z|
√
α = 50rad/s, 

i.e., z = 50/
√
5 = 22.36 rad/s, and p = 5z = 50

√
5 = 111.8 rad/s. 

The resulting straight-line Bode plot is shown in Figure 7. The phase at 50 rad/s is as de
sired... however, the crossover frequency has moved to the right as an effect of the increased 
gain at high frequencies due to the lead compensator. 
In order to recover the correct crossover frequency, and the desired phase margin, we can 

lower the gain (i.e., shift the magnitude Bode plot downwards). Fortunately, we have some 
room to reduce the gain and still meet requirements (1) and (2), since we artificially increased 
the gain to 250 in step (3). 
According to the straight-line approximation, if Gc(s) = 250(s/22.36 + 1)/(s/111.8 + 1), 

the magnitude of L(jω) at ω = 50 rad/s can be obtained as follows: 

• L(j1) = 250. 
• L(j10) = L(j1)/10 = 25 (-1 slope). 

1I apologize for giving an incorrect number in class, stating that this max phase lead would be about 60 
degrees. 
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Figure 7: Bode plot for a candidate lead compensator satisfying specifications (4) and (5). 
The crossover frequency is higher than desired, and the phase margin is smaller. 

• L(j22.36) = L(j10)/(22.36/10)2 = 5 (-2 slope). 
• L(j50) = L(j22.36)/(50/22.36) = 2.236 (-1 slope). 

In other words, we need to reduce the gain by a factor of 2.236, i.e., set K = 250/2.236 = 
111.8, and finally set 

s + 1 
Gc(s) = 111.8 22s

.36 ,
+ 1

111.8 

or, in the equivalent root-locus form, 

s + 22.36 
Gc(s) = 559 . 

s + 111.8 

Note that this compensator satisfies the error specifications (1) and (2), since K is still 
greater than the minimum values we obtained from those requirements. If this had not been 
the case, we could have added a lag compensator at low frequencies. 
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Figure 8: Bode plot for the final lead compensator satisfying specifications (1)-(5).
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