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Lyapunov Stability Analysis


•	 Very general method to prove (or disprove) stability of nonlinear sys
tems. 

• Formalizes idea that all systems will tend to a “minimum-energy” 
state. 

• Lyapunov’s stability theory is the single most powerful method 
in stability analysis of nonlinear systems. 

•	 Consider a nonlinear system ẋ = f (x) 

• A point x0 is an equilibrium point if f (x0) = 0 

• Can always assume x0 = 0 

•	 In general, an equilibrium point is said to be 

• Stable in the sense of Lyapunov if (arbitrarily) small devia
tions from the equilibrium result in trajectories that stay (arbitrar
ily) close to the equilibrium for all time. 

• Asymptotically stable if small deviations from the equilibrium 
are eventually “forgotten,” and the system returns asymptotically 
to the equilibrium point. 

• Exponentially stable if it is asymptotically stable, and the con
vergence to the equilibrium point is “fast.” 
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Stability 

• Let x = 0 ∈ D be an equilibrium point of the system 

ẋ = f (x),


where f : D → Rn is locally Lipschitz in D ⊂ R


• f (x) is locally Lipschitz in D if ∀x ∈ D ∃I(x) such that |f (y) − 
f (z)| ≤ L|y − z| for all y, z ∈ I(x). 

• Smoothness condition for functions which is stronger than regular 
continuity – intuitively, a Lipschitz continuous function is limited 
in how fast it can change. (see here) 

• A sufficient condition for a function to be Lipschitz is that the 
Jacobian ∂f/∂x is uniformly bounded for all x. 

• The equilibrium point is 

• Stable in the sense of Lyapunov (ISL) if, for each ε ≥ 0, 
there is δ = δ(ε) > 0 such that


�x(0)� < δ ⇒ �x(t)� ≤ ε, ∀t ≥ 0;


• Asymptotically stable if stable, and there exists δ > 0 s.t. 

�x(0)� < δ lim x(t) = 0 ⇒ 
t→+∞ 

• Exponentially stable if there exist δ, α, β > 0 s.t.


�x(0)� < δ ⇒ �x(t)� < βe−αt , ∀t ≥ 0;


Unstable if not stable. • 

xe 

x(0) 

δ � 

ISL or Marginally Stable 

Unstable 
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•	 How do we analyze the stability of an equilibrium point? 

•	 Already talked about how to linearize the dynamics about the equilib
rium point and use the conclusion from the linear analysis to develop 
a local conclusion 

• Often called Lyapunov’s first method 

•	 How about a more global conclusion? 

• Powerful method based on concept of Lyapunov function 

� Lyapunov’s second method 

• LF is a scalar function of the state that is always non-negative, 
is zero only at the equilibrium point, and is such that its value is 
non-increasing along system’s trajectories. 

•	 Generalization of result from classical mechanics, which is that a vi
bratory system is stable if the total energy is continually decreasing. 
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Lyapunov Stability Theorem


•	 Let D be a compact subset1 of the state space, containing the equi
librium point (i.e., {x0} ⊂ D ⊂ Rn), and a let there be a function 
V	 : D R.→ 

•	 Theorem: The equilibrium point x0 is stable (in the sense of Lya
punov) if the V satisfies the following conditions (and if it does, it is 
called a Lyapunov function): 

1.	V (x) ≥ 0, for all x ∈ D. 

2.	V (x) = 0 if and only if x = x0. 

3. For all x(t) ∈ D, 

V̇ (x(t)) ≡ 
d
V (x(t)) = 

∂V (x) dx(t) 
dt ∂x 

· 
dt 

∂V (x) 
= f (x) ≤ 0 

∂x 
· 

•	 Furthermore, 

1. If	 V̇ (x(t)) = 0 only when x(t) = x0, then the equilibrium is 
asymptotically stable. 

2. If V̇ (x(t)) < −αV (x(t)), for some α > 0, then the equilibrium 
is exponentially stable. 

•	 Finally, to ensure global stability, need to impose extra condition 
that as �x� → +∞, then V (x) +∞.→ 

•	Such a function V is said radially unbounded 

1A compact set is a set that is closed and bounded, e.g., the set {(x, y) : 0 ≤ x ≤ 1, −x2 ≤ y ≤ x2 . 
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•	 Note that condition (1) in the Theorem corresponds to V (x) being 
positive definite (V (x) > 0 for all x = 0 and V (0) = 0.) 

V (x) being positive semi-definite means V (x) ≥ 0 for all x, but 
V (x) can be zero at points other than x = 0.) 

i) V (x) = x1
2 + x22 PD, PSD, ND, NSD, ID 

ia) V (x) = x1
2 PD, PSD, ND, NSD, ID 

ii) V (x) = (x1 + x2)2 PD, PSD, ND, NSD, ID 

iii) V (x) = −x1
2 − (3x1 + 2x2)

2 PD, PSD, ND, NSD, ID 

iv) V (x) = x1x2 + x2
2 PD, PSD, ND, NSD, ID 

v)	V (x) = x2 2x2
2 

PD, PSD, ND, NSD, ID 1 + 
1+x2 

2 

November 27, 2010 



Fall 2010	 16.30/31 22–7


Example 1: Pendulum


•	 Typical method for finding candidate Lyapunov functions is based on 
the mechanical energy in the system 

•	 Consider a pendulum: 

θ ̈= −g 
sin(θ) − cθ, ˙

l 

• Setting x1 = θ, x2 = θ̇: 

ẋ1	 = x2 
g 

ẋ2	 = −
l 
sin(x1) − cx2 

•	 Can use the mechanical energy as a Lyapunov function candidate: 

V =
1 
ml2 x2

2 + mgl(1 − cos(x1))
2 

•	 Analysis: 

V (0) = 0


V (x1, x2) ≥ 0


V̇ (x1, x2) = (ml2 x2)ẋ2 + mgl sin(x1)ẋ1 

= −cml2 x 22 ≤ 0 

•	 Thus the equilibrium point (x1, x2) = 0 is stable in the sense of 
Lyapunov. 

• But note that V̇ is only NSD 
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Example 2: Linear System 

•	 Consider a system ẋ = Ax. 

•	 Another common choice: quadratic Lyapunov functions, 

V (x) = �Mx�2 = x TMTMx = x TP x


with P = MTM , a symmetric and positive definite matrix.


• Easy to check that V (0) = 0, and V (x) ≥ 0 

•	 To find the derivative along trajectories, note that 

V̇ (x) = ẋTP x + x TP ẋ

= x TATP x + x TPAx 

= x T (ATP + PA)x 

•	 Next step: make this derivative equal to a given negative-definite 
function 

V̇ (x) = x T (ATP + PA)x = −x TQx, (Q > 0) 

•	 Then appropriate matrix P can be found by solving: 

ATP + PA = −Q 

• Not surprisingly, this is called a Lyapunov equation 

• Note that it happens to be the linear part of a Riccati equation 

• It always has a solution if all the eigenvalues of A are in the left 
half plane (i.e., A is Hurwitz, and defines a stable linear system) 
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Example 3: Controlled Linear System 

• Consider a possibly unstable, but controllable linear system 

ẋ = Ax + Bu 

•	 We know that if we solve the Riccati equation 

ATP + PA − PBR−1BTP + Q = 0 

and set u = Kx with K = −R−1BTP , the closed-loop system is 
stable. 

ẋ = (A + BK)x 

• Can confirm this fact using the Lyapunov Thm. 

•	 In particular, note that the solution P of the Riccati equation has the 
interpretation of a Lyapunov function, i.e., for this closed-loop system 
we can use 

V (x) = x TP x 

Check:• 

V̇ (x) = x TP ẋ + ẋTP x 

= x TP (A + BK)x + x T (A + BK)TP x 

= x T (PA + PBK + ATP + KTBTP )x 

= x T (ATP + PA − PBR−1BTP − PBR−1BTP )x 

= −x T (Q + PBR−1BTP )x ≤ 0 
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Example 4: Local Region 

•	 Consider the system 
dx 2 

= 
dt 1 + x 

− x


which has equilibrium points at x = 1 and x = −2.


•	 Around the eq point x = 1, let z = x − 1, then 

dz 2 
= 

dt 2 + z 
− z − 1


which has an eq point at z = 0.


• Consider LF V = 2
1 z2 which is global PD 

Then can show • 
2z 

V̇ = zż = 
2 + z 

− z 2 − z 

•	 Now restrict attention to an interval Br, where r < 2 and thus z < 2 
and −2 < z, which can be rewritten as 2 + z > 0, then have 

V̇ (2 + z) = 2z − (z 2 + z)(2 + z) 

= −z 3 − 3z 2 

= −z 2(z + 3) < 0 ∀z ∈ Br(r < 2) 

•	 Thus it follows that V̇ < 0 for all z ∈ Br, z �= 0 and hence the eq 
point xe = 1 is locally asymptotically stable. 
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Example 5: Saturation


f (e) 1 
T s 

1 
s 

u x2 

−− 

r e x1 

• System dynamics are 

ė = −x2 

1 f (e) 
ẋ2 = x2 +−

T T 
where it is known that: 

• u = f (e) and f (·) lies in the first and third quadrants 
e

f (e) = 0 means e = 0, and f (e)de > 0• 0 

• Assume that T > 0 so open loop stable 

• Candidate Lyapunov function 

T e 

V = x 22 + f (σ)dσ 
2 0 

• Clearly: 

V = 0 if e = x2 = 0 and V > 0 for x2
2 + e2 = 0 

What about the derivative? • 

V̇ = Tx2x�˙ 2 + f (e)ė � 
1 f (e) 

= Tx2 −
T
x2 + 

T 
+ f (e) [−x2] 

2 = −x2 

• Since V PD and V̇ NSD, the origin is stable ISL. 
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Invariance Principle


•	 Lyapunov’s theorem ensures asymptotic stability if we can find a Lya
punov function that is strictly decreasing away from the equilibrium. 

• Unfortunately, in many cases (e.g., in aerospace, robotics, etc.), 
there may be situations in which V̇ = 0 for states other than at 
the equilibrium. (i.e. V̇ is NSD not ND) 

• Need further analysis tool for these types of systems, since stable 
ISL is typically insufficient 

•	 LaSalle’s invariance principle Consider a system 

ẋ = f (x) 

• Let Ω ∈ D be a (compact) positively invariant set, i.e., a set such 
that if x(t0) ∈ Ω, then x(t) ∈ Ω for all t ≥ t0. 

• Let V : D → R, such that V̇ (x) ≤ 0 for all x ∈ Ω. 

Then, x(t) will eventually approach the largest positively invariant set 
in which V̇ = 0. 

•	 Note that positively invariant sets include equilibrium points and limit 
cycles. 
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Invariance Example 1


•	 Pendulum Revisited – consider again the mechanical energy as the 
Lyapunov function 

Showed that V̇ (x) = −cml2x2
2 ∼ θ̇2 • 

Thus previously could only show that V̇ (x) ≤ 0, and the system • 
is stable ISL 

But we know that V̇ (x) = 0 whenever θ̇ = 0, i.e., the system is • 
on the	x2 = θ̇ = 0 axis 

• However, the only part of the x2 = 0 axis that is invariant is the 
origin! 

• LaSalle’s invariance principle allows us to conclude that the pen
dulum system response must tend to this invariant set 

• Hence the system is in fact asymptotically stable. 

•	 Revisit Example 5: 

V̇ decreasing if x2 = 0, and the only invariant point is x2 = e = 0, 
so the origin is asymptotically stable 
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Invariance Example 2 

•	 Limit cycle: 

7
1


4
1


2
2
ẋ1
 [x
 + 2x
 − 10] 

2+ 2x2

x2 − x 

− 3x 3
1

=

5
2
[x
41
ẋ2
 − 10]
−x
=


4
1


2
2
Note that x
 + 2x
 − 10 is invariant since
•


d

dt

[x
41


2
2


10

1
 + 12x
62
)(x
41
+ 2x
22
− 10)
+ 2x
 − 10] = −(4x


4
1
+ 2x
22
= 10.
which is zero if x


= −x
31
, which
• Dynamics on this set governed by ẋ1 = x2 and ẋ2


corresponds to a limit cycle with clockwise state motion in the 
phase plane 

•	 Is the limit cycle attractive? To determine, pick 

V = (x
41
+ 2x
22
− 10)2


which is a measure of the distance to the LC. 

• In a region about the LC, can show that 

V̇ 10
 6
2
)(x
41
+ 2x
22
− 10)2
= −8(x
 + 3x
1


so
V̇
 < 0 except if x
41
+ 2x
22
= 10 (the LC) or x
10

1
 + 3x
62
= 0 (at


origin). 

•	 Conclusion: since the origin and LC are the invariant set for this 
system - thus all trajectories starting in a neighborhood of the LC 
converge to this invariant set 

• Actually turns out the origin in unstable. 
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Summary 

•	 Lyapunov functions are a very powerful tool to study stability of a 
system. 

•	 Lyapunov’s theorem only gives us a sufficient condition for stability 

• If we can find a Lyapunov function, then we know the equilibrium 
is stable. 

• However, if a candidate Lyapunov function does not satisfy the 
conditions in the theorem, this does not prove that the equi
librium is unstable. 

•	 Unfortunately, there is no general way for constructing Lyapunov func
tions; however, 

• Often energy can be used as a Lyapunov function. 

• Quadratic Lyapunov functions are commonly used; these can be 
derived from linearization of the system near equilibrium points. 

• A very recent development: “Sum-of-squares” methods can be 
used to construct polynomial Lyapunov functions. 

LaSalle’s invariance principle very useful in resolving cases when V̇ is• 
negative semi-definite. 
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