Topic #22

16.30/31 Feedback Control Systems

Analysis of Nonlinear Systems

• Lyapunov Stability Analysis

Lyapunov Stability Analysis

- Very general method to prove (or disprove) stability of nonlinear systems.
 - Formalizes idea that all systems will tend to a "minimum-energy" state.
 - Lyapunov's stability theory is the single most powerful method in stability analysis of nonlinear systems.

- Consider a nonlinear system $\dot{\mathbf{x}} = f(\mathbf{x})$
 - A point \mathbf{x}_0 is an equilibrium point if $f(\mathbf{x}_0) = 0$
 - Can always assume $\mathbf{x}_0 = 0$

- In general, an equilibrium point is said to be
 - Stable in the sense of Lyapunov if (arbitrarily) small deviations from the equilibrium result in trajectories that stay (arbitrarily) close to the equilibrium for all time.
 - Asymptotically stable if small deviations from the equilibrium are eventually "forgotten," and the system returns asymptotically to the equilibrium point.
 - Exponentially stable if it is asymptotically stable, and the convergence to the equilibrium point is "fast."

Stability

• Let $\mathbf{x} = 0 \in D$ be an equilibrium point of the system

$$\dot{\mathbf{x}} = f(\mathbf{x}),$$

where $f:D\to \mathbb{R}^n$ is locally Lipschitz in $D\subset \mathbb{R}$

- $f(\mathbf{x})$ is locally Lipschitz in D if $\forall \mathbf{x} \in D \exists I(\mathbf{x})$ such that $|f(\mathbf{y}) f(\mathbf{z})| \leq L|\mathbf{y} \mathbf{z}|$ for all $\mathbf{y}, \mathbf{z} \in I(\mathbf{x})$.
- Smoothness condition for functions which is stronger than regular continuity – intuitively, a Lipschitz continuous function is limited in how fast it can change. (see here)
- A sufficient condition for a function to be Lipschitz is that the Jacobian $\partial f/\partial \mathbf{x}$ is uniformly bounded for all \mathbf{x} .
- The equilibrium point is
 - Stable in the sense of Lyapunov (ISL) if, for each $\varepsilon \ge 0$, there is $\delta = \delta(\varepsilon) > 0$ such that

$$\|\mathbf{x}(0)\| < \delta \Rightarrow \|\mathbf{x}(t)\| \le \varepsilon, \quad \forall t \ge 0;$$

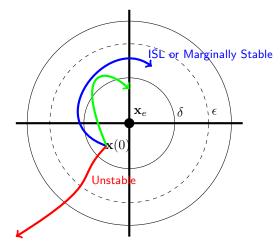
• Asymptotically stable if stable, and there exists $\delta > 0$ s.t.

$$\|\mathbf{x}(0)\| < \delta \Rightarrow \lim_{t \to +\infty} \mathbf{x}(t) = 0$$

• Exponentially stable if there exist $\delta, \alpha, \beta > 0$ s.t.

$$\|\mathbf{x}(0)\| < \delta \Rightarrow \|\mathbf{x}(t)\| < \beta e^{-\alpha t}, \forall t \ge 0;$$

• Unstable if not stable.



• How do we analyze the stability of an equilibrium point?

- Already talked about how to linearize the dynamics about the equilibrium point and use the conclusion from the linear analysis to develop a **local** conclusion
 - Often called Lyapunov's first method

- How about a more global conclusion?
 - Powerful method based on concept of Lyapunov function
 - Lyapunov's second method
 - LF is a scalar function of the state that is always non-negative, is zero only at the equilibrium point, and is such that its value is non-increasing along system's trajectories.

• Generalization of result from classical mechanics, which is that a vibratory system is stable if the total energy is continually decreasing.

Lyapunov Stability Theorem

- Let D be a compact subset¹ of the state space, containing the equilibrium point (i.e., {x₀} ⊂ D ⊂ ℝⁿ), and a let there be a function V : D → ℝ.
- **Theorem:** The equilibrium point \mathbf{x}_0 is stable (in the sense of Lyapunov) if the V satisfies the following conditions (and if it does, it is called a Lyapunov function):
 - 1. $V(\mathbf{x}) \ge 0$, for all $\mathbf{x} \in D$.
 - 2. $V(\mathbf{x}) = 0$ if and only if $\mathbf{x} = \mathbf{x}_0$.
 - 3. For all $\mathbf{x}(t) \in D$,

$$\begin{split} \dot{V}(\mathbf{x}(t)) &\equiv \frac{d}{dt} V(\mathbf{x}(t)) \;=\; \frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} \cdot \frac{d\mathbf{x}(t)}{dt} \\ &=\; \frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} \cdot f(\mathbf{x}) \leq 0 \end{split}$$

- Furthermore,
 - 1. If $\dot{V}(\mathbf{x}(t)) = 0$ only when $\mathbf{x}(t) = \mathbf{x}_0$, then the equilibrium is asymptotically stable.
 - 2. If $\dot{V}(\mathbf{x}(t)) < -\alpha V(\mathbf{x}(t))$, for some $\alpha > 0$, then the equilibrium is **exponentially stable**.
- Finally, to ensure global stability, need to impose extra condition that as $\|\mathbf{x}\| \to +\infty$, then $V(\mathbf{x}) \to +\infty$.
 - Such a function V is said radially unbounded

¹A compact set is a set that is closed and bounded, e.g., the set $\{(x, y) : 0 \le x \le 1, -x^2 \le y \le x^2$.

Fall 2010

- Note that condition (1) in the Theorem corresponds to V(x) being positive definite (V(x) > 0 for all x ≠ 0 and V(0) = 0.)
 - $V({\bf x})$ being positive semi-definite means $V({\bf x}) \geq 0$ for all ${\bf x}$, but $V({\bf x})$ can be zero at points other than ${\bf x}=0.$)
 - i) $V(\mathbf{x}) = x_1^2 + x_2^2$ PD, PSD, ND, NSD, ID
 - PD, PSD, ND, NSD, ID
 - ii) $V(\mathbf{x}) = (x_1 + x_2)^2$ PD, PSD, ND, NSD, ID
 - iii) $V(\mathbf{x}) = -x_1^2 (3x_1 + 2x_2)^2$

iv)
$$V(\mathbf{x}) = x_1 x_2 + x_2^2$$
 P

v)
$$V(\mathbf{x}) = x_1^2 + \frac{2x_2^2}{1+x_2^2}$$

ia) $V(\mathbf{x}) = x_1^2$

- PD, PSD, ND, NSD, ID
- PD, PSD, ND, NSD, ID
- PD, PSD, ND, NSD, ID

Example 1: Pendulum

- Typical method for finding candidate Lyapunov functions is based on the mechanical energy in the system
- Consider a pendulum:

$$\ddot{\theta} = -\frac{g}{l}\sin(\theta) - c\dot{\theta},$$

• Setting $x_1 = \theta$, $x_2 = \dot{\theta}$:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -\frac{g}{l}\sin(x_1) - cx_2$

• Can use the mechanical energy as a Lyapunov function candidate:

$$V = \frac{1}{2}ml^2x_2^2 + mgl(1 - \cos(x_1))$$

• Analysis:

$$V(0) = 0$$

$$V(x_1, x_2) \ge 0$$

$$\dot{V}(x_1, x_2) = (ml^2 x_2) \dot{x}_2 + mgl \sin(x_1) \dot{x}_1$$

$$= -cml^2 x_2^2 \le 0$$

- Thus the equilibrium point $(x_1, x_2) = 0$ is stable in the sense of Lyapunov.
 - But note that \dot{V} is only NSD

Example 2: Linear System

- Consider a system $\dot{\mathbf{x}} = A\mathbf{x}$.
- Another common choice: quadratic Lyapunov functions,

$$V(\mathbf{x}) = \|M\mathbf{x}\|^2 = \mathbf{x}^T M^T M \mathbf{x} = \mathbf{x}^T P \mathbf{x}$$

with $P = M^T M$, a symmetric and positive definite matrix.

- Easy to check that V(0) = 0, and $V(\mathbf{x}) \ge 0$
- To find the derivative along trajectories, note that

$$\dot{V}(\mathbf{x}) = \dot{\mathbf{x}}^T P \mathbf{x} + \mathbf{x}^T P \dot{\mathbf{x}}$$

= $\mathbf{x}^T A^T P \mathbf{x} + \mathbf{x}^T P A \mathbf{x}$
= $\mathbf{x}^T (A^T P + P A) \mathbf{x}$

• Next step: make this derivative equal to a given negative-definite function

$$\dot{V}(\mathbf{x}) = \mathbf{x}^T (A^T P + P A) \mathbf{x} = -\mathbf{x}^T Q \mathbf{x}, \quad (Q > 0)$$

• Then appropriate matrix *P* can be found by solving:

$$A^T P + P A = -Q$$

- Not surprisingly, this is called a Lyapunov equation
- Note that it happens to be the linear part of a Riccati equation
- It always has a solution if all the eigenvalues of A are in the left half plane (i.e., A is Hurwitz, and defines a stable linear system)

Example 3: Controlled Linear System

• Consider a possibly unstable, but controllable linear system

 $\dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$

• We know that if we solve the Riccati equation

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

and set $\mathbf{u} = K\mathbf{x}$ with $K = -R^{-1}B^TP$, the closed-loop system is stable.

$$\dot{\mathbf{x}} = (A + BK)\mathbf{x}$$

- Can confirm this fact using the Lyapunov Thm.
- In particular, note that the solution P of the Riccati equation has the interpretation of a Lyapunov function, i.e., for this closed-loop system we can use

$$V(\mathbf{x}) = \mathbf{x}^T P \mathbf{x}$$

• Check:

$$\begin{split} \dot{V}(\mathbf{x}) &= \mathbf{x}^T P \dot{\mathbf{x}} + \dot{\mathbf{x}}^T P \mathbf{x} \\ &= \mathbf{x}^T P (A + BK) \mathbf{x} + \mathbf{x}^T (A + BK)^T P \mathbf{x} \\ &= \mathbf{x}^T (PA + PBK + A^T P + K^T B^T P) \mathbf{x} \\ &= \mathbf{x}^T (A^T P + PA - PBR^{-1}B^T P - PBR^{-1}B^T P) \mathbf{x} \\ &= -\mathbf{x}^T (Q + PBR^{-1}B^T P) \mathbf{x} \le 0 \end{split}$$

Example 4: Local Region

• Consider the system

$$\frac{dx}{dt} = \frac{2}{1+x} - x$$

which has equilibrium points at x = 1 and x = -2.

• Around the eq point x = 1, let z = x - 1, then

$$\frac{dz}{dt} = \frac{2}{2+z} - z - 1$$

which has an eq point at z = 0.

- Consider LF $V = \frac{1}{2}z^2$ which is global PD
- Then can show

$$\dot{V} = z\dot{z} = \frac{2z}{2+z} - z^2 - z$$

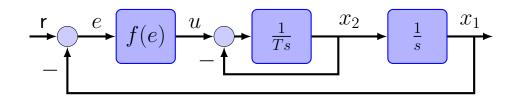
• Now restrict attention to an interval B_r , where r < 2 and thus z < 2and -2 < z, which can be rewritten as 2 + z > 0, then have

$$\dot{V}(2+z) = 2z - (z^2 + z)(2+z)$$

= $-z^3 - 3z^2$
= $-z^2(z+3) < 0 \ \forall z \in B_r(r<2)$

• Thus it follows that $\dot{V} < 0$ for all $z \in B_r$, $z \neq 0$ and hence the eq point $x_e = 1$ is locally asymptotically stable.

Example 5: Saturation



• System dynamics are

$$\dot{e} = -x_2$$

$$\dot{x}_2 = -\frac{1}{T}x_2 + \frac{f(e)}{T}$$

where it is known that:

- u = f(e) and $f(\cdot)$ lies in the first and third quadrants
- f(e) = 0 means e = 0, and $\int_0^e f(e)de > 0$
- Assume that T > 0 so open loop stable
- Candidate Lyapunov function

$$V = \frac{T}{2}x_2^2 + \int_0^e f(\sigma)d\sigma$$

- Clearly:
 - V = 0 if $e = x_2 = 0$ and V > 0 for $x_2^2 + e^2 \neq 0$
 - What about the derivative?

$$\dot{V} = Tx_2\dot{x}_2 + f(e)\dot{e}
= Tx_2 \left[-\frac{1}{T}x_2 + \frac{f(e)}{T} \right] + f(e) \left[-x_2 \right]
= -x_2^2$$

• Since V PD and \dot{V} NSD, the origin is stable ISL.

Invariance Principle

- Lyapunov's theorem ensures asymptotic stability if we can find a Lyapunov function that is strictly decreasing away from the equilibrium.
 - Unfortunately, in many cases (e.g., in aerospace, robotics, etc.), there may be situations in which $\dot{V} = 0$ for states other than at the equilibrium. (i.e. \dot{V} is NSD not ND)
 - Need further analysis tool for these types of systems, since stable ISL is typically insufficient

• LaSalle's invariance principle Consider a system

$$\dot{\mathbf{x}} = f(\mathbf{x})$$

- Let $\Omega \in D$ be a (compact) positively invariant set, i.e., a set such that if $\mathbf{x}(t_0) \in \Omega$, then $\mathbf{x}(t) \in \Omega$ for all $t \ge t_0$.
- Let $V: D \to \mathbb{R}$, such that $\dot{V}(\mathbf{x}) \leq 0$ for all $\mathbf{x} \in \Omega$.

Then, $\mathbf{x}(t)$ will eventually approach the largest positively invariant set in which $\dot{V} = 0$.

• Note that positively invariant sets include equilibrium points and limit cycles.

Fall 2010

Invariance Example 1

- Pendulum Revisited consider again the mechanical energy as the Lyapunov function
 - Showed that $\dot{V}(\mathbf{x}) = -cml^2 x_2^2 \sim \dot{\theta}^2$
 - Thus previously could only show that $\dot{V}(\mathbf{x}) \leq 0$, and the system is stable ISL
 - But we know that $\dot{V}(\mathbf{x}) = 0$ whenever $\dot{\theta} = 0$, i.e., the system is on the $x_2 = \dot{\theta} = 0$ axis
 - However, the only part of the $\mathbf{x}_2 = 0$ axis that is invariant is the origin!
 - LaSalle's invariance principle allows us to conclude that the pendulum system response must tend to this invariant set
 - Hence the system is in fact asymptotically stable.

- Revisit Example 5:
 - *V* decreasing if x₂ ≠ 0, and the only invariant point is x₂ = e = 0, so the origin is asymptotically stable

Invariance Example 2

• Limit cycle:

$$\dot{x}_1 = x_2 - x_1^7 [x_1^4 + 2x_2^2 - 10]$$

$$\dot{x}_2 = -x_1^3 - 3x_2^5 [x_1^4 + 2x_2^2 - 10]$$

• Note that $x_1^4 + 2x_2^2 - 10$ is invariant since $\frac{d}{dt}[x_1^4 + 2x_2^2 - 10] = -(4x_1^{10} + 12x_2^6)(x_1^4 + 2x_2^2 - 10)$

which is zero if $x_1^4 + 2x_2^2 = 10$.

- Dynamics on this set governed by $\dot{x}_1 = x_2$ and $\dot{x}_2 = -x_1^3$, which corresponds to a limit cycle with clockwise state motion in the phase plane
- Is the limit cycle attractive? To determine, pick

 $V = (x_1^4 + 2x_2^2 - 10)^2$

which is a measure of the distance to the LC.

• In a region about the LC, can show that

$$\dot{V} = -8(x_1^{10} + 3x_2^6)(x_1^4 + 2x_2^2 - 10)^2$$

so $\dot{V} < 0$ except if $x_1^4 + 2x_2^2 = 10$ (the LC) or $x_1^{10} + 3x_2^6 = 0$ (at origin).

- Conclusion: since the origin and LC are the invariant set for this system - thus all trajectories starting in a neighborhood of the LC converge to this invariant set
 - Actually turns out the origin in unstable.

Summary

- Lyapunov functions are a very powerful tool to study stability of a system.
- Lyapunov's theorem only gives us a sufficient condition for stability
 - If we can find a Lyapunov function, then we know the equilibrium is stable.
 - However, if a candidate Lyapunov function does not satisfy the conditions in the theorem, **this does not prove** that the equilibrium is unstable.
- Unfortunately, there is no general way for constructing Lyapunov functions; however,
 - Often energy can be used as a Lyapunov function.
 - Quadratic Lyapunov functions are commonly used; these can be derived from linearization of the system near equilibrium points.
 - A very recent development: "Sum-of-squares" methods can be used to construct polynomial Lyapunov functions.
- LaSalle's invariance principle very useful in resolving cases when \dot{V} is negative semi-definite.

16.30 / 16.31 Feedback Control Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.