Topic #19

16.31 Feedback Control Systems

- Stengel Chapter 6
- Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)?

Linear Quadratic Gaussian (LQG)

 When we use the combination of an optimal estimator (not discussed in this course) and an optimal regulator to design the controller, the compensator is called

Linear Quadratic Gaussian (LQG)

- Special case of the controllers that can be designed using the separation principle.
- Great news about an LQG design is that stability of the closed-loop system is guaranteed.
 - The designer is freed from having to perform any detailed mechanics - the entire process is fast and automated.
 - Designer can focus on the "performance" related issues, being confident that the LQG design will produce a controller that stabilizes the system.
 - \bullet Selecting values of $R_{\rm zz}$, $R_{\rm uu}$ and relative sizes of $R_{\rm ww}$ & $R_{\rm vv}$
- This sounds great so what is the catch??
- Remaining issue is that sometimes the controllers designed using these state space tools are very sensitive to errors in the knowledge of the model.
 - *i.e.*, the compensator might work **very well** if the plant gain $\alpha = 1$, but be unstable if $\alpha = 0.9$ or $\alpha = 1.1$.
 - LQG is also prone to plant-pole/compensator-zero cancelation, which tends to be sensitive to modeling errors.
- J. Doyle, "Guaranteed Margins for LQG Regulators", IEEE *Transactions on Automatic Control*, Vol. 23, No. 4, pp. 756-757, 1978.

- The good news is that the state-space techniques will give you a controller very easily.
 - You should use the time saved to verify that the one you designed is a "good" controller.

- There are, of course, different definitions of what makes a controller good, but one important criterion is whether there is a reasonable chance that it would work on the real system as well as it does in Matlab.
 ⇒ Robustness.
 - The controller must be able to tolerate some modeling error, because our models in Matlab are typically inaccurate.
 - Linearized model
 - Some parameters poorly known
 - Ignores some higher frequency dynamics

• Need to develop tools that will give us some insight on how well a controller can tolerate modeling errors.

LQG Robustness Example

• Cart with an inverted pendulum on top.

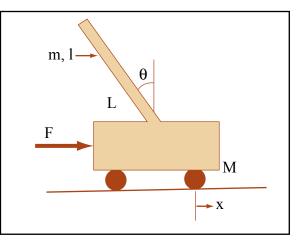


Image by MIT OpenCourseWare.

- Force actuator and angle sensor
- Can develop the nonlinear equations for large angle motions
- Linearize for small θ

$$\begin{split} (I+ml^2)\ddot{\theta} - mgl\theta &= mL\ddot{x}\\ (M+m)\ddot{x} + b\dot{x} - mL\ddot{\theta} &= F\\ \begin{bmatrix} (I+ml^2)s^2 - mgL & -mLs^2\\ -mLs^2 & (M+m)s^2 + bs \end{bmatrix} \begin{bmatrix} \theta(s)\\ x(s) \end{bmatrix} = \begin{bmatrix} 0\\ F \end{bmatrix} \end{split}$$
 ich gives

which gives

$$\begin{aligned} \frac{\theta(s)}{F} &= \frac{mLs^2}{[(I+ml^2)s^2 - mgL][(M+m)s^2 + bs] - (mLs^2)^2} \\ \frac{x(s)}{F} &= \frac{(I+ml^2)s^2 - mgL}{[(I+ml^2)s^2 - mgL][(M+m)s^2 + bs] - (mLs^2)^2} \end{aligned}$$

• Set M = 0.5, m = 0.2, b = 0.1, I = 0.006, L = 0.3 to get:

$$\frac{x}{F} = \frac{-1.818s^2 + 44.55}{s^4 + 0.1818s^3 - 31.18s^2 - 4.45s}$$

which has poles at $s = \pm 5.6$, s = 0, and s = -0.14 and plant zeros at ± 5 .

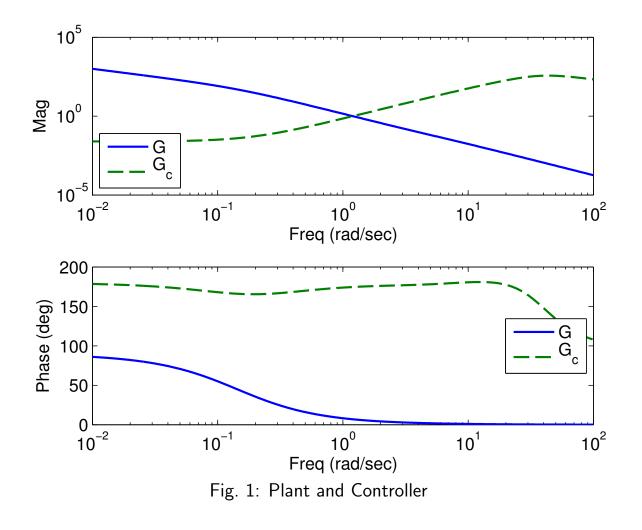
• Define

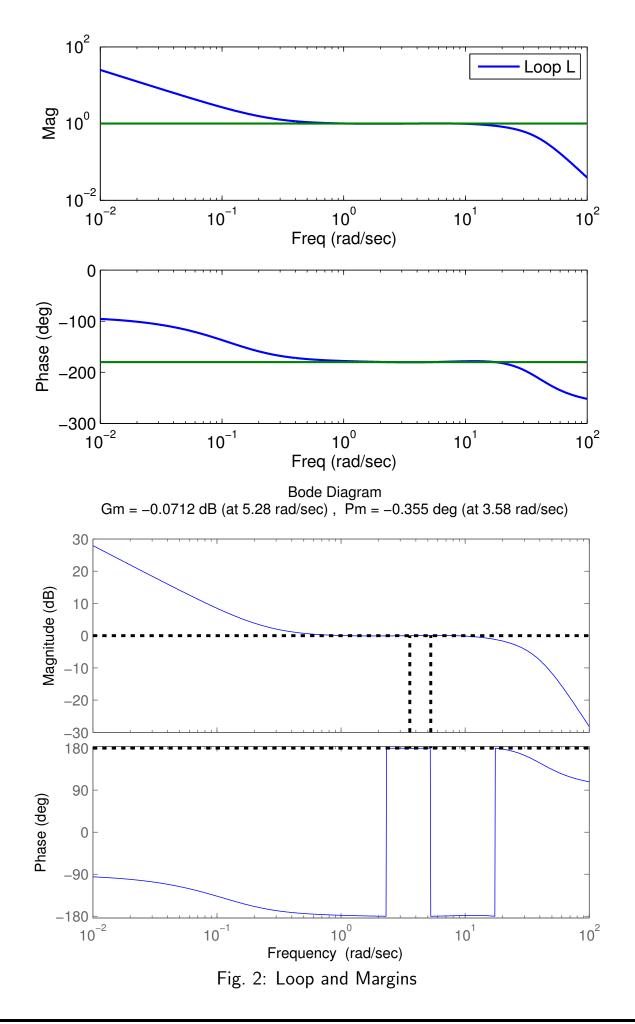
$$q = \begin{bmatrix} \theta \\ x \end{bmatrix} , \quad \mathbf{x} = \begin{bmatrix} q \\ \dot{q} \end{bmatrix}$$

Then with y = x

$$\dot{\mathbf{x}} = A\mathbf{x} + B_u u$$
$$y = C_y \mathbf{x}$$

- Very simple LQG design main result is fairly independent of the choice of the weighting matrices.
- The resulting compensator is unstable (+23!!)
 - This is somewhat expected. (why?)





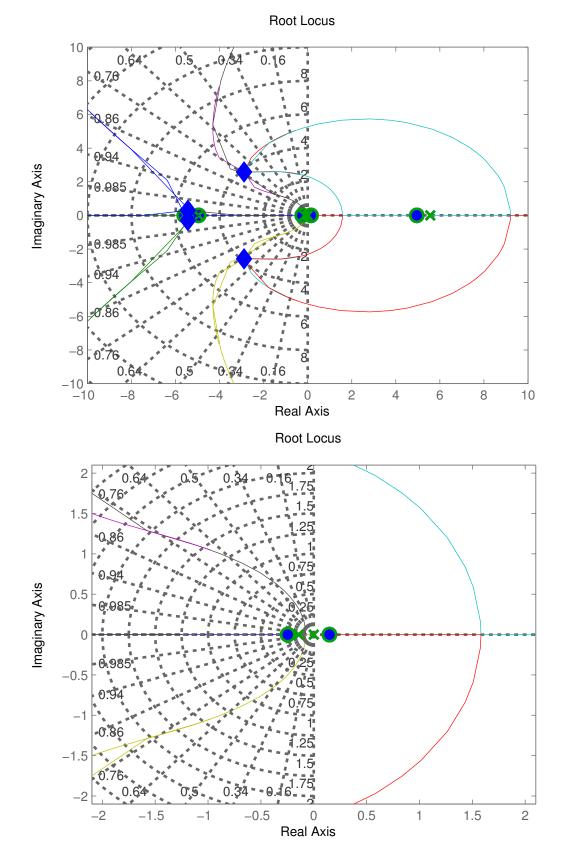


Fig. 3: Root Locus with frozen compensator dynamics. Shows sensitivity to overall gain – symbols are a gain of [0.995:.0001:1.005].

- Looking at both the Loop TF plots and the root locus, it is clear this system is stable with a gain of 1, but
 - Unstable for a gain of $1 \pm \epsilon$ and/or a slight change in the system phase (possibly due to some unmodeled delays)
 - Very limited chance that this would work on the real system.

• Of course, this is an extreme example and not all systems are like this, but you must analyze to determine what **robustness margins** your controller really has.

• **Question:** what analysis tools should we use?

Frequency Domain Tests

- Frequency domain stability tests provide further insights on the **stability margins**.
- Recall that the Nyquist Stability Theorem provides a binary measure of stability, or not.
- But already discussed that we can use "closeness" of L(s) to the critical point as a measure of "closeness" to changing the number of encirclements.
 - Closeness translates to high sensitivity which corresponds to $L_N(\mathbf{j}\omega)$ being **very** close to the critical point.
 - Ideally you would want the sensitivity to be low. Same as saying that you want $L(\mathbf{j}\omega)$ to be far from the critical point.

- Premise is that the system is stable for the nominal system ⇒ has the right number of encirclements.
 - Goal of the robustness test is to see if the possible perturbations to our system model (due to modeling errors) can change the number of encirclements
 - In this case, say that the perturbations can **destabilize** the system.

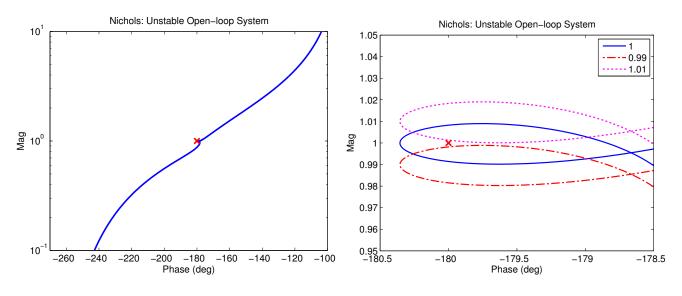
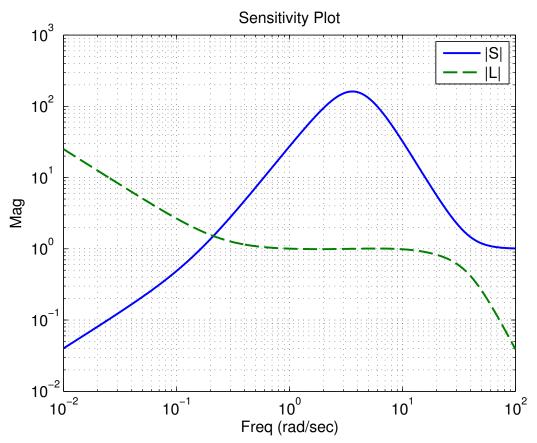
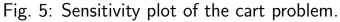


Fig. 4: Nichols Plot ($|L((j\omega))|$ vs. $\arg L((j\omega))$) for the cart example which clearly shows sensitivity to overall gain and/or phase lag.





Difficulty in this example is that the open-loop system is unstable, so $L(\mathbf{j}\omega)$ must encircle the critical point \Rightarrow hard for $L(\mathbf{j}\omega)$ to get too far away from the critical point.

Summary

- LQG gives you a great way to design a controller for the nominal system.
- But there are no guarantees about the stability/performance if the actual system is slightly different.
 - Basic analysis tool is the **Sensitivity Plot**
- No obvious ways to tailor the specification of the LQG controller to improve any lack of robustness
 - Apart from the obvious "lower the controller bandwidth" approach.
 - And sometimes you need the bandwidth just to stabilize the system.
- Very hard to include additional robustness constraints into LQG
 - See my Ph.D. thesis in 1992.
- Other tools have been developed that allow you to directly shape the sensitivity plot $|S(\mathbf{j}\omega)|$
 - ullet Called \mathcal{H}_∞ and μ
- **Good news:** Lack of robustness is something you should look for, but it is not always an issue.

16.30 / 16.31 Feedback Control Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.