
Topic #14 

16.30/31 Feedback Control Systems 

State-Space Systems 

• Open-loop Estimators 

• Closed-loop Estimators 

• Observer Theory (no noise) – Luenberger

IEEE TAC Vol 16, No. 6, pp. 596–602, Dec 1971. 

• Estimation Theory (with noise) – Kalman


• Reading: FPE 7.5
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Estimators/Observers


Problem: So far we have assumed that we have full access to the • 
state x(t) when we designed our controllers.


Most often all of this information is not available.
• 

•	 Usually can only feedback information that is developed from the 
sensors measurements. 

• Could try “output feedback” 

u = Kx u = K̂y⇒ 

• Same as the proportional feedback we looked at at the beginning 
of the root locus work. 

• This type of control is very difficult to design in general. 

•	 Alternative approach: Develop a replica of the dynamic system 
that provides an “estimate” of the system states based on the mea
sured output of the system. 

•	 New plan: 

1. Develop estimate of x(t) that will be called x̂(t). 
2. Then switch from u(t) = −Kx(t) to u(t) = −Kx̂(t). 

•	 Two key questions: 

• How do we find x̂(t)? 

• Will this new plan work? 
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Estimation Schemes 

• Assume that the system model is of the form: 

ẋ(t) = Ax(t) + Bu(t) , x(0) unknown 

y(t) = Cx(t) 

where 

1. A, B, and C are known. 

2. u(t) is known 

3. Measurable outputs are y(t) from C = I 

• Goal: Develop a dynamic system whose state 

x̂(t) = x(t)


for all time t ≥ 0. Two primary approaches:


• Open-loop. 

• Closed-loop. 
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Open-loop Estimator


•	 Given that we know the plant matrices and the inputs, we can just 
perform a simulation that runs in parallel with the system 

ẋ̂(t) = Ax̂(t) + Bu(t) 

•	 Then x̂(t) ≡ x(t) ∀ t provided that x̂(0) = x(0) 

Actual System 
x: A, B, C 

Estimator 
x̂: A, B, C 

y 

ŷ 

u 

•	 Analysis of this case: 

ẋ(t) = Ax(t) + Bu(t) 

ẋ̂(t) = Ax̂(t) + Bu(t) 

•	 Define the estimation error x̃(t) = x(t) − x̂(t). 
Now want x̃(t) = 0 ∀ t. (But is this realistic?) 

•	 Major Problem: We do not know x(0) 
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•	 Subtract to get: 

d 
dt
(x(t) − x̂(t)) = A(x(t) − x̂(t)) ⇒ ẋ̃(t) = Ax̃(t) 

which has the solution 

x̃(t) = eAt x̃(0) 

Gives the estimation error in terms of the initial error. • 

•	 Does this guarantee that x̃(t) = 0 ∀ t? 
Or even that x̃(t) 0 as t → ∞? (which is a more realistic goal). → 

Response is fine if x̃(0) = 0. But what if x̃(0) = 0? 

•	 If A stable, then x̃(t) → 0 as t → ∞, but the dynamics of the 
estimation error are completely determined by the open-loop dynamics 
of the system (eigenvalues of A). 

• Could be very slow. 

• No obvious way to modify the estimation error dynamics. 

•	 Open-loop estimation does not seem to be a very good idea. 
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Closed-loop Estimator


An obvious way to fix this problem is to use the additional information • 
available: 

How well does the estimated output match the measured output? • 

Compare: y(t) = Cx(t) with ŷ(t) = Cx̂(t) 

• Then form ỹ(t) = y(t) − ŷ(t) ≡ Cx̃(t) 

Actual System 
x: A, B, C 

Estimator 
x̂: A, B, C 

L 
ỹ 

u 

ŷ 
− 

y 

+ 

•	 Approach: Feedback ỹ(t) to improve our estimate of the state. 
Basic form of the estimator is: 

ẋ̂(t) = Ax̂(t) + Bu(t) + Lỹ(t) 

ŷ(t) = Cx̂(t) 

where L is the user selectable gain matrix. 

Analysis:• 

ẋ̃(t) = ẋ(t) − ẋ̂(t) 

= [Ax(t) + Bu(t)] − [Ax̂(t) + Bu(t) + L(y(t) − ŷ(t))] 

= A(x(t) − x̂(t)) − L(Cx(t) − Cx̂(t)) 

= Ax̃(t) − LCx̃(t) 

= (A − LC)x̃(t) 

October 17, 2010 
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•	 So the closed-loop estimation error dynamics are now 

ẋ̃(t) = (A − LC)x̃(t) 

with solution 
x̃(t) = e(A−LC)t x̃(0) 

•	 Bottom line: Can select the gain L to attempt to improve the 
convergence of the estimation error (and/or speed it up). 

• But now must worry about observability of the system model. 

•	 Closed-loop estimator: 

ẋ̂(t) = Ax̂(t) + Bu(t) + Lỹ(t) 

= Ax̂(t) + Bu(t) + L(y(t) − ŷ(t)) 

= (A − LC)x̂(t) + Bu(t) + Ly(t) 

ŷ(t) = Cx̂(t) 

• Which is a dynamic system with poles given by λi(A − LC) and 
which takes the measured plant outputs as an input and generates 
an estimate of x(t). 
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Regulator/Estimator Comparison 

•	 Regulator Problem: 

• Concerned with controllability of (A,B) 

For a controllable system we can place the eigenvalues 
of A − BK arbitrarily. 

• Choose K ∈ R1×n (SISO) such that the closed-loop poles 

det(sI − A + BK) = Φc(s) 

are in the desired locations. 

Estimator Problem: • 

• For estimation, were concerned with observability of pair (A,C). 

For a observable system we can place the eigenvalues of 
A − LC arbitrarily. 

• Choose L ∈ Rn×1 (SISO) such that the closed-loop poles 

det(sI − A + LC) = Φo(s) 

are in the desired locations. 

•	 These problems are obviously very similar – in fact they are called 
dual problems. 
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Estimation Gain Selection 

•	 The procedure for selecting L is very similar to that used for the 
regulator design process. 

•	 Write the system model in observer canonical form ⎡ ⎤ ⎡	 ⎤⎡ ⎤ ⎡ ⎤ 
ẋ1 −a1 1 0 x1 b1 ⎣ ẋ2 ⎦ = ⎣ −a2 0 1 ⎦⎣ x2 ⎦ + ⎣ b2 ⎦ u 
ẋ3 −a3 0 0 x3 b3 ⎡ ⎤ � � x1 

y = 1 0 0 ⎣ x2 ⎦ 

x3 

•	 Now very simple to form ⎡	 ⎤ ⎡ ⎤ 
−a1 1 0 l1 

A − LC = ⎣ −a2 0 1 ⎦ − ⎣ l2 ⎦ 1 0 0 
−a3 0 0 l3 ⎡	 ⎤ 
−a1 − l1 1 0 

= ⎣ −a2 − l2 0 1 ⎦ 

−a3 − l3 0 0 

• The closed-loop poles of the estimator are at the roots of 

det(sI − A + LC) = s 3 + (a1 + l1)s 2 + (a2 + l2)s + (a3 + l3) = 0 

• Use Pole Placement algorithm with this characteristic equation. 

•	 Note: estimator equivalent of Ackermann’s formula is that ⎡ ⎤ 
0 ⎢ . ⎥ 

L = Φe(A)M−1 ⎢⎢ .. ⎥⎥ 
o ⎣ 0 ⎦ 

1 
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Dual Design Approach


•	 Note that the poles of (A − LC) and (A − LC)T are identical. 

• Also we have that (A − LC)T = AT − CTLT 

• So designing LT for this transposed system looks like a standard 
regulator problem (A − BK) where 

A AT ⇒ 
B CT ⇒ 
K LT ⇒ 

So we can use 

Ke = acker(AT,CT , P ) , L ≡ Ke
T 

•	 In fact, just as k=lqr(A,B,Q,R) returns a good set of control gains, 
can use 

˜Ke = lqr(AT,CT ,Q, R̃) , L ≡ KT 
e 

to design a good set of “optimal” estimator gains


Roles of Q̃ and R̃ explained in 16.322
• 
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� � 

� � � � 

•	 � � 

Fall 2010	 16.30/31 14–11


Estimators Example 

• Simple system � � � �	 � � −1 1.5 1	 −0.5 
A =	 , B = , x(0) = 

1 −2 0	 −1 

C = 1 0 , D = 0 

Assume that the initial conditions are not well known. • 

• System stable, but λmax(A) = −0.18 

• Test observability: 

C	 1 0 
rank = rank 

CA	 −1 1.5 

•	 Use open and closed-loop estimators 

Since the initial conditions are not well known, use 

0 
x̂(0) = 

0 

• Open-loop estimator: 

ẋ̂(t)	 = Ax̂(t) + Bu(t) 

ŷ(t)	 = Cx̂(t) 

• Typically simulate both systems together for simplicity
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• Open-loop case: 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

ẋ̂(t) = Ax̂(t) + Bu(t) 

ŷ(t) = Cx̂(t) 

ẋ(t)
 A 0 x(t) B 
+ u(t)=
⇒ 

ẋ̂(t) 0 A x̂(t)
 B
⎤
⎡

−0.5

−1

0

0


⎥⎥⎥⎦


⎢⎢⎢⎣

x(0)

x̂(0)


=


y(t)
 C 0 x(t)

= 

ŷ(t) 0 C x̂(t) 

• Closed-loop case: 

ẋ(t) = Ax(t) + Bu(t)


ẋ̂(t) = (A − LC)x̂(t) + Bu(t) + LCx(t)


ẋ(t)
 A 0 x(t) B 
+ u(t)=
⇒ 

ẋ̂(t) LC A − LC x̂(t)
 B


• Example uses a strong u(t) to shake things up
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Fig. 1: Open-loop estimator error converges to zero, but very slowly.
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Fig. 2: Closed-loop estimator. Convergence looks much better.
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Where Put Estimator Poles? 

•	 Location heuristics for poles still apply 

• Main difference: probably want to make the estimator faster than 
you intend to make the regulator – should enhance the control, 
which is based on x̂(t). 

• Crude ROT: Factor of ≈2 in the time constant ζωn associated 
with the regulator poles. 

•	 Note: When designing a regulator, were concerned with “bandwidth” 
of the control getting too high often results in control commands ⇒ 
that saturate the actuators and/or change rapidly. 

Different concerns for the estimator: • 

• Loop closed inside computer, so saturation not a problem. 

• However, measurements y are often “noisy”, and must be careful 
how we use them to develop state estimates. 

⇒ High bandwidth estimators tend to accentuate the effect of sens
ing noise in the estimate. 

• State estimates tend to “track” the data in the measurements, 
which could be fluctuating randomly due to the noise. 

⇒ Low bandwidth estimators have lower gains and tend to rely more 
heavily on the plant model 

• Essentially an open-loop estimator – tends to ignore the measure
ments and just uses the plant model. 
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Final Thoughts


•	 Note that the feedback gain L in the estimator only stabilizes the 
estimation error. 

• If the system is unstable, then the state estimates will also go to 
∞, with zero error from the actual states. 

•	 Estimation is an important concept of its own. 

• Not always just “part of the control system” 

• Critical issue for guidance and navigation system 

•	 Can develop an optimal estimate as well 

• More complete discussion requires that we study stochastic pro
cesses and optimization theory. 

• More in 16.322 – take in Spring or see 2004 OCW notes 

•	 Estimation is all about which do you trust more: your measure
ments or your model. 

October 17, 2010 
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Code: Estimator 

% Examples of estimator performance

%

% Jonathan How

% Oct 2010

%

% plant dynamics

%

close all;clear all

set(0,'DefaultLineLineWidth',2);

set(0,'DefaultlineMarkerSize',10);set(0,'DefaultlineMarkerFace','b')

set(0, 'DefaultAxesFontSize', 12);set(0, 'DefaultTextFontSize', 12)


set(0,'DefaultFigureColor','w',... 
'DefaultAxesColor','w',... 
'DefaultAxesXColor','k',... 
'DefaultAxesYColor','k',... 
'DefaultAxesZColor','k',... 
'DefaultTextColor','k') 

a=[−1 1.5;1 −2];b=[1 0]';c=[1 0];d=0;

%

% estimator gain calc

l=place(a',c',[−3 −4]);l=l'

%

% plant initial cond

xo=[−.5;−1];

% extimator initial cond

xe=[0 0]';

%

t=[0:.1:10];

%

% inputs

u=0;u=[ones(15,1);−ones(15,1);ones(15,1)/2;−ones(15,1)/2;zeros(41,1)];

%

% open−loop extimator

A ol=[a zeros(size(a));zeros(size(a)) a];

B ol=[b;b];

C ol=[c zeros(size(c));zeros(size(c)) c];

D ol=zeros(2,1);

%

% closed−loop extimator

A cl=[a zeros(size(a));l*c a−l*c];

B cl=[b;b];

C cl=[c zeros(size(c));zeros(size(c)) c];

D cl=zeros(2,1);


[y cl,x cl]=lsim(A cl,B cl,C cl,D cl,u,t,[xo;xe]); 
[y ol,x ol]=lsim(A ol,B ol,C ol,D ol,u,t,[xo;xe]); 

figure(1);clf;subplot(211)

set(gca)

plot(t,x cl(:,[1 2]),t,x cl(:,[3 4]),'−−','LineWidth',2);axis([0 4 −1 1]);

title('Closed−loop estimator');ylabel('states');xlabel('time')

text(.25,−.4,'x 1');text(.5,−.55,'x 2');subplot(212)

plot(t,x cl(:,[1 2])−x cl(:,[3 4]))

setlines(2);axis([0 4 −1 1]);grid on

ylabel('estimation error');xlabel('time')


figure(2);clf;subplot(211)

set(gca)

plot(t,x ol(:,[1 2]),t,x ol(:,[3 4]),'−−','LineWidth',2);axis([0 4 −1 1])

title('Open loop estimator');ylabel('states');xlabel('time')

text(.25,−.4,'x 1');text(.5,−.55,'x 2');subplot(212)

plot(t,x ol(:,[1 2])−x ol(:,[3 4]))

setlines(2);axis([0 4 −1 1]);grid on

ylabel('estimation error');xlabel('time')


figure(1);export fig est11 −pdf 
figure(2);export fig est12 −pdf 
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