Topic \#11

16.31 Feedback Control Systems

State-Space Systems

- Full-state Feedback Control
- How do we change the poles of the state-space system?
- Or, even if we can change the pole locations.
- Where do we change the pole locations to?
- How well does this approach work?
- Reading: FPE 7.3

Full-state Feedback Controller

- Assume that the single-input system dynamics are given by

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B \mathbf{u}(t) \\
\mathbf{y}(t) & =C \mathbf{x}(t)
\end{aligned}
$$

so that $D=0$.

- The multi-actuator case is quite a bit more complicated as we would have many extra degrees of freedom.
- Recall that the system poles are given by the eigenvalues of A.
- Want to use the input $\mathbf{u}(t)$ to modify the eigenvalues of A to change the system dynamics.

- Assume a full-state feedback of the form:

$$
\mathbf{u}(t)=\mathbf{r}-K \mathbf{x}(t)
$$

where \mathbf{r} is some reference input and the gain K is $\mathbb{R}^{1 \times n}$

- If $\mathbf{r}=0$, we call this controller a regulator
- Find the closed-loop dynamics:

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B(\mathbf{r}-K \mathbf{x}(t)) \\
& =(A-B K) \mathbf{x}(t)+B \mathbf{r} \\
& =A_{c l} \mathbf{x}(t)+B \mathbf{r} \\
\mathbf{y}(t) & =C \mathbf{x}(t)
\end{aligned}
$$

- Objective: Pick K so that $A_{c l}$ has the desired properties, e.g.,
- A unstable, want $A_{c l}$ stable
- Put 2 poles at $-2 \pm 2 \mathbf{i}$
- Note that there are n parameters in K and n eigenvalues in A, so it looks promising, but what can we achieve?
- Example \#1: Consider:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u
$$

- Then $\operatorname{det}(s I-A)=(s-1)(s-2)-1=s^{2}-3 s+1=0$ so the system is unstable.
- Define $u=-\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right] \mathbf{x}(t)=-K \mathbf{x}(t)$, then

$$
\begin{aligned}
A_{c l}=A-B K & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-k_{1} & 1-k_{2} \\
1 & 2
\end{array}\right]
\end{aligned}
$$

which gives

$$
\operatorname{det}\left(s I-A_{c l}\right)=s^{2}+\left(k_{1}-3\right) s+\left(1-2 k_{1}+k_{2}\right)=0
$$

- Thus, by choosing k_{1} and k_{2}, we can put $\lambda_{i}\left(A_{c l}\right)$ anywhere in the complex plane (assuming complex conjugate pairs of poles).
- To put the poles at $s=-5,-6$, compare the desired characteristic equation

$$
(s+5)(s+6)=s^{2}+11 s+30=0
$$

with the closed-loop one

$$
s^{2}+\left(k_{1}-3\right) s+\left(1-2 k_{1}+k_{2}\right)=0
$$

to conclude that

$$
\left.\begin{array}{c}
k_{1}-3=11 \\
1-2 k_{1}+k_{2}=30
\end{array}\right\} \begin{aligned}
& k_{1}=14 \\
& k_{2}=57
\end{aligned}
$$

so that $K=\left[\begin{array}{ll}14 & 57\end{array}\right]$, which is called Pole Placement.

- Of course, it is not always this easy, as lack of controllability might be an issue.
- Example \#2: Consider this system:

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u
$$

with the same control approach

$$
A_{c l}=A-B K=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
k_{1} & k_{2}
\end{array}\right]=\left[\begin{array}{cc}
1-k_{1} & 1-k_{2} \\
0 & 2
\end{array}\right]
$$

so that

$$
\operatorname{det}\left(s I-A_{c l}\right)=\left(s-1+k_{1}\right)(s-2)=0
$$

So the feedback control can modify the pole at $s=1$, but it cannot move the pole at $s=2$.

- System cannot be stabilized with full-state feedback.
- Problem caused by a lack of controllability of the $e^{2 t}$ mode.
- Consider the basic controllability test:

$$
\mathcal{M}_{c}=[B \mid A B]=\left[\left[\begin{array}{l}
1 \\
0
\end{array}\right] \left\lvert\,\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right.\right]
$$

So that rank $\mathcal{M}_{c}=1<2$.

- Modal analysis of controllability to develop a little more insight

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right], \text { decompose as } \quad A V=V \Lambda \quad \Rightarrow \Lambda=V^{-1} A V
$$

where

$$
\Lambda=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \quad V=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad V^{-1}=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]
$$

Convert

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+B u \xrightarrow{z=V^{-1} \mathbf{x}(t)} \quad \dot{z}=\Lambda z+V^{-1} B u
$$

where $z=\left[\begin{array}{ll}z_{1} & z_{2}\end{array}\right]^{T}$. But:

$$
V^{-1} B=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

so that the dynamics in modal form are:

$$
\dot{z}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] z+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u
$$

- With this zero in the modal B-matrix, can easily see that the mode associated with the z_{2} state is uncontrollable.
- Must assume that the pair (A, B) are controllable.

Ackermann's Formula

- The previous outlined a design procedure and showed how to do it by hand for second-order systems.
- Extends to higher order (controllable) systems, but tedious.
- Ackermann's Formula gives us a method of doing this entire design process is one easy step.

$$
K=\left[\begin{array}{llll}
0 & \ldots & 0 & 1
\end{array}\right] \mathcal{M}_{c}^{-1} \Phi_{d}(A)
$$

- $\mathcal{M}_{c}=\left[\begin{array}{llll}B & A B & \ldots & A^{n-1} B\end{array}\right]$ as before
- $\Phi_{d}(s)$ is the characteristic equation for the closed-loop poles, which we then evaluate for $s=A$.
- Note: is explicit that the system must be controllable because we are inverting the controllability matrix.
- Revisit Example \# 1: $\Phi_{d}(s)=s^{2}+11 s+30$

$$
\mathcal{M}_{c}=[B \mid A B]=\left[\left[\begin{array}{l}
1 \\
0
\end{array}\right] \left\lvert\,\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right.\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

So

$$
\begin{aligned}
K & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{2}+11\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]+30 I\right) \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left(\left[\begin{array}{ll}
43 & 14 \\
14 & 57
\end{array}\right]\right)=\left[\begin{array}{ll}
14 & 57
\end{array}\right]
\end{aligned}
$$

- Automated in Matlab: place.m \& acker.m (see polyvalm.m too)

Origins of Ackermann's Formula

- For simplicity, consider third-order system (case \#2 on 6-??), but this extends to any order.

$$
A=\left[\begin{array}{rrr}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad C=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

- See key benefit of using control canonical state-space model
- This form is useful because the characteristic equation for the system is obvious $\Rightarrow \operatorname{det}(s I-A)=s^{3}+a_{1} s^{2}+a_{2} s+a_{3}=0$
- Can show that

$$
\begin{aligned}
A_{c l}=A-B K & =\left[\begin{array}{rrr}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lll}
k_{1} & k_{2} & k_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-a_{1}-k_{1} & -a_{2}-k_{2} & -a_{3}-k_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

so that the characteristic equation for the system is still obvious:

$$
\begin{aligned}
\Phi_{c l}(s) & =\operatorname{det}\left(s I-A_{c l}\right) \\
& =s^{3}+\left(a_{1}+k_{1}\right) s^{2}+\left(a_{2}+k_{2}\right) s+\left(a_{3}+k_{3}\right)=0
\end{aligned}
$$

- Compare with the characteristic equation developed from the desired closed-loop pole locations:

$$
\Phi_{d}(s)=s^{3}+\left(\alpha_{1}\right) s^{2}+\left(\alpha_{2}\right) s+\left(\alpha_{3}\right)=0
$$

to get that

$$
\left.\begin{array}{c}
a_{1}+k_{1}=\alpha_{1} \\
\vdots \\
a_{n}+k_{n}=\alpha_{n}
\end{array}\right\} \begin{gathered}
k_{1}=\alpha_{1}-a_{1} \\
\vdots \\
k_{n}=\alpha_{n}-a_{n}
\end{gathered}
$$

- To get the specifics of the Ackermann formula, we then:
- Take an arbitrary A, B and transform it to the control canonical form $\left(\mathbf{x}(t) \sim \mathbf{z}(t)=T^{-1} \mathbf{x}(t)\right)$
- Not obvious, but \mathcal{M}_{c} can be used to form this T
- Solve for the gains \hat{K} using the formulas at top of page for the state $\mathbf{z}(t)$

$$
u(t)=\hat{K} \mathbf{z}(t)
$$

- Then switch back to gains needed for the state $\mathbf{x}(t)$, so that

$$
K=\hat{K} T^{-1} \Rightarrow u=\hat{K} \mathbf{z}(t)=K \mathbf{x}(t)
$$

- Pole placement is a very powerful tool and we will be using it for most of this course.

Reference Inputs

- So far we have looked at how to pick K to get the dynamics to have some nice properties (i.e. stabilize A)
- The question remains as to how well this controller allows us to track a reference command?
- Performance issue rather than just stability.
- Started with

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B u \quad y=C \mathbf{x}(t) \\
u & =r-K \mathbf{x}(t)
\end{aligned}
$$

- For good tracking performance we want

$$
y(t) \approx r(t) \text { as } t \rightarrow \infty
$$

- Consider this performance issue in the frequency domain. Use the final value theorem:

$$
\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s Y(s)
$$

Thus, for good performance, we want

$$
s Y(s) \approx s R(s) \text { as }\left.s \rightarrow 0 \Rightarrow \frac{Y(s)}{R(s)}\right|_{s=0}=1
$$

- So, for good performance, the transfer function from $R(s)$ to $Y(s)$ should be approximately 1 at DC.
- Example \#1 continued: For the system

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \mathbf{x}(t)
\end{aligned}
$$

- Already designed $K=\left[\begin{array}{ll}14 & 57\end{array}\right]$ so the closed-loop system is

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =(A-B K) \mathbf{x}(t)+B r \\
y & =C \mathbf{x}(t)
\end{aligned}
$$

which gives the transfer function

$$
\begin{aligned}
\frac{Y(s)}{R(s)} & =C(s I-(A-B K))^{-1} B \\
& =\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
s+13 & 56 \\
-1 & s-2
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{s-2}{s^{2}+11 s+30}
\end{aligned}
$$

- Assume that $r(t)$ is a step, then by the FVT

$$
\left.\frac{Y(s)}{R(s)}\right|_{s=0}=-\frac{2}{30} \neq 1!!
$$

- So our step response is quite poor!
- One solution is to scale the reference input $r(t)$ so that

$$
u=\bar{N} r-K \mathbf{x}(t)
$$

- \bar{N} extra gain used to scale the closed-loop transfer function
- Now we have

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =(A-B K) \mathbf{x}(t)+B \bar{N} r \\
y & =C \mathbf{x}(t)
\end{aligned}
$$

so that

$$
\frac{Y(s)}{R(s)}=C(s I-(A-B K))^{-1} B \bar{N}=G_{c l}(s) \bar{N}
$$

If we had made $\bar{N}=-15$, then

$$
\frac{Y(s)}{R(s)}=\frac{-15(s-2)}{s^{2}+11 s+30}
$$

so with a step input, $y(t) \rightarrow 1$ as $t \rightarrow \infty$.

- Clearly can compute

$$
\bar{N}=G_{c l}(0)^{-1}=-\left(C(A-B K)^{-1} B\right)^{-1}
$$

- Note that this development assumed that r was constant, but it could also be used if r is a slowly time-varying command.
- So the steady state step error is now zero, but is this OK?
- See plots - big improvement in the response, but transient a bit weird.

Fig. 1: Response to step input with and without the \bar{N} correction.

Code: Step Response (step1.m)

```
% full state feedback for topic 13
% reference input issues
a=[lllll 2];b=[[1 0}]\mp@code{1;c=[[1 0}]|;d=0
k=[14 57];
Nbar=-15;
sys1=ss(a-b*k,b,c,d);
sys2=ss(a-b*k,b*Nbar,c,d);
t=[0:.025:4];
[y,t,x]=step(sys1,t);
[y2,t2,x2]=step(sys2,t);
plot(t,y,'—',t2,y2,'LineWidth',2);axis([0 4 -1 1.2]);grid;
legend('u=r-Kx','u=Nbar r-Kx','Location','SouthEast')
xlabel('time (sec)');ylabel('Y output');title('Step Response')
print -dpng -r300 step1.png
```


Pole Placement Examples

- Simple example:

$$
G(s)=\frac{8 \cdot 14 \cdot 20}{(s+8)(s+14)(s+20)}
$$

- Target pole locations $-12 \pm 12 \mathbf{i},-20$

Fig. 2: Response to step input with and without the \bar{N} correction. Gives the desired steady-state behavior, with little difficulty!

Fig. 3: Closed-loop frequency response. Clearly shows unity DC gain

- Example system with 1 unstable pole

$$
G(s)=\frac{0.94}{s^{2}-0.0297}
$$

- Target pole locations $-0.25 \pm 0.25 \mathbf{i}$

Fig. 4: Response to step input with and without the \bar{N} correction. Gives the desired steady-state behavior, with little difficulty!

Fig. 5: Closed-loop frequency response. Clearly shows unity DC gain

- OK, so let's try something challenging. . .

$$
G(s)=\frac{8 \cdot 14 \cdot 20}{(s-8)(s-14)(s-20)}
$$

- Target pole locations $-12 \pm 12 \mathbf{i},-20$

Fig. 6: Response to step input with and without the \bar{N} correction. Gives the desired steady-state behavior, with little difficulty!

Fig. 7: Closed-loop frequency response. Clearly shows unity DC gain

- The worst possible. . . Unstable, NMP!!

$$
G(s)=\frac{(s-1)}{(s+1)(s-3)}
$$

- Target pole locations $-1 \pm \mathbf{i}$

Fig. 8: Response to step input with and without the \bar{N} correction. Gives the desired steady-state behavior, with little difficulty!

Fig. 9: Closed-loop frequency response. Clearly shows unity DC gain

FSFB Summary

- Full state feedback process is quite simple as it can be automated in Matlab using acker and/or place
- With more than 1 actuator, we have more than n degrees of freedom in the control \rightarrow we can change the eigenvectors as desired, as well as the poles.
- The real issue now is where to put the poles...
- And to correct the fact that we cannot usually measure the state \rightarrow develop an estimator.

Code: Step Response (step3.m)

```
% Examples of pole placement with FSFB
% demonstrating the Nbar modifcation to the reference command
%
% Jonathan How
% Sept, 2010
%
close all;clear all
set(0,'DefaultLineLineWidth',2)
set(0,'DefaultlineMarkerSize',10); set(0, 'DefaultlineMarkerFace','b')
set(0, 'DefaultAxesFontSize', 14); set(0, 'DefaultTextFontSize', 14);
% system
[a,b,c,d]=tf2ss(8*14*20,conv([1 8],conv([[1 14],[1 20])));
% controller gains to place poles at specified locations
k=place(a,b,[-12+12*j;-12-12*j;-20]);
% find the feedforward gains
Nbar=-inv(c*inv(a-b*k)*b);
sys1=ss(a-b*k,b,c,d);
sys2=ss(a-b*k,b*Nbar,c,d);
t=[0:.01:1];
[y,t,x]=step (sys1,t);
[y2,t2,x2]=step (sys2,t);
figure(1);clf
plot(t,y,'__',t2,y2,'LineWidth',2);axis([[0 1 0 1.2]);grid;
legend('u=r-Kx','u=Nbar r-Kx');xlabel('time (sec)');ylabel('Y output')
title('Step Response')
hold on
plot(t2([1 end]), [.1 .1]*y2(end),'r_-');
plot(t2([1 end]), [.1 .1]*9*y2(end),'r_-');
hold off
text(.4,.6, ['k= [ ', num2str(round(k*1000)/1000),' ]'],'FontSize',14)
text(.4,.8,['Nbar= ', num2str(round(Nbar*1000)/1000)],'FontSize',14)
export_fig triple1 -pdf
figure(1);clf
f=logspace(-1,2,400);
gcl1=freqresp(sys1,f);
gcl2=freqresp(sys2,f);
loglog(f,abs(squeeze(gcl1)),f,abs(squeeze(gcl2)),'LineWidth',2);grid
xlabel('Freq (rad/sec)')
ylabel('G_{cl}')
title('Closed-loop Freq Response')
legend('u=r-Kx','u=Nbar r-Kx')
export_fig triple11 -pdf
%%%%%%%%%%
% example 2
%
clear all
[a,b,c,d]=tf2ss(8*14*20,conv([1 - 8],conv([1-14],[1-20])))
k=place (a,b, [-12+12*j;-12-12*j;-20])
% find the feedforward gains
Nbar=-inv(c*inv (a-b*k)*b);
sys1=ss(a-b*k,b,c,d)
sys2=ss(a-b*k,b*Nbar,c,d);
t=[0:.01:1];
[y,t,x]=step (sys1,t);
[y2,t2,x2]=step(sys2,t);
figure(2);clf
plot(t,y,'-',t2,y2,'LineWidth',2);axis([0 1 0 1.2])
grid;
legend('u=r-Kx','u=Nbar r-Kx')
xlabel('time (sec)');ylabel('Y output');title('Step Response')
hold on
plot(t2([1 end]),[.1 .1]*y2(end),'r-');
```

```
plot(t2([1 end]),[.1 .1]*9*y2(end),'r_'');
hold off
text(.4,.6,['k= [ ', num2str(round(k*1000)/1000),' ]'],'FontSize',14)
text(.4,.8,['Nbar= ',num2str(round(Nbar*1000)/1000)],'FontSize',14)
export_fig triple2 -pdf
figure(2);clf
f=logspace(-1,2,400);
gcl1=freqresp(sys1,f);
gcl2=freqresp(sys2,f);
loglog(f,abs(squeeze(gcl1)),f,abs(squeeze(gcl2)),'LineWidth',2);grid
xlabel('Freq (rad/sec)')
ylabel('G_{cl}')
title('Closed-loop Freq Response')
legend('u=r-Kx','u=Nbar r-Kx')
export_fig triple21 -pdf
%%%%%%%%%%%%%%
% example 3
clear all
[a,b,c,d]=tf2ss(.94,[1 0 -0.0297])
k=place (a,b,[-1+j;-1-j]/4)
% find the feedforward gains
Nbar=-inv(c*inv(a-b*k)*b);
sys1=ss(a-b*k,b,c,d);
sys2=ss(a-b*k,b*Nbar,c,d);
t=[0:.1:30];
[y,t,x]=step(sys1,t);
[y2,t2,x2]=step (sys2,t);
figure(3);clf
plot(t,y,'__',t2,y2,'LineWidth',2);axis([[0 30 0 2 [)
grid;
legend('u=r-Kx','u=Nbar r-Kx')
xlabel('time (sec)');ylabel('Y output');title('Step Response')
hold on
plot(t2([1 end]),[.1 .1]*y2(end),'r-');
plot(t2([1 end]),[.1 . 1]*9*y2(end),'r-');
hold off
text(15,.6,['k= [ ', num2str(round(k*1000)/1000),' ]'],'FontSize',14)
text(15,.8,['Nbar= ',num2str(round(Nbar*1000)/1000)],'FontSize',14)
export_fig triple3 -pdf
figure(3);clf
f=logspace (-3,1,400);
gcl1=freqresp(sys1,f);
gcl2=freqresp(sys2,f);
loglog(f,abs(squeeze(gcl1)),f,abs(squeeze(gcl2)),'LineWidth', 2);grid
xlabel('Freq (rad/sec)')
ylabel('G_{cl}')
title('Closed-loop Freq Response')
legend('u=r-Kx','u=Nbar r-Kx')
export_fig triple31 -pdf
%%%%%%%%%%%%
% example 4
clear all
[a,b,c,d]=tf2ss([1 -1],conv([[1 1],[1 -3]))
k=place (a,b, [[-1+j;-1-j]])
% find the feedforward gains
Nbar=-inv(c*inv (a-b*k)*b);
sys1=ss(a-b*k,b,c,d);
sys2=ss(a-b*k,b*Nbar,c,d);
t=[0:.1:10];
[y,t,x]=step (sys1,t);
[y2,t2,x2]=step (sys2,t);
figure(3);clf
plot(t,y,'_',t2,y2,'LineWidth',2);axis([[0 10 -1 1.2])
```

```
152 grid;
153 legend('u=r-Kx','u=Nbar r-Kx')
154 xlabel('time (sec)');ylabel('Y output')
155 title('Unstable, NMP system Step Response')
156 hold on
157 plot(t2([1 end]),[.1 .1]*y2(end),'r-');
158 plot(t2([1 end]),[.1 .1]*9*y2(end),'r-');
15 hold off
text(5,.6,['k= [ ', num2str(round (k*1000)/1000),' ]'],'FontSize',14)
text(5,.8,['Nbar= ',num2str(round(Nbar*1000)/1000)],'FontSize',14)
export_fig triple4 -pdf
figure(4);clf
f=logspace (-2,2,400);
gcl1=freqresp(sys1,f);
gcl2=freqresp(sys2,f);
loglog(f,abs(squeeze(gcl1)),f,abs(squeeze(gcl2)),'LineWidth',2);grid
xlabel('Freq (rad/sec)')
ylabel('G_{cl}')
title('Closed-loop Freq Response')
legend('u=r-Kx','u=Nbar r-Kx')
export_fig triple41 -pdf
```

MIT OpenCourseWare
http://ocw.mit.edu

16.30 / 16.31 Feedback Control Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

