Topic #9

$16.30/31\ Feedback\ Control\ Systems$

State-Space Systems

- State-space model features
- Observability
- Controllability
- Minimal Realizations

State-Space Model Features

- There are some key characteristics of a state-space model that we need to identify.
 - Will see that these are very closely associated with the concepts of pole/zero cancelation in transfer functions.
- Example: Consider a simple system

$$G(s) = \frac{6}{s+2}$$

for which we develop the state-space model

• But now consider the new state space model $\bar{\mathbf{x}} = \begin{bmatrix} x & x_2 \end{bmatrix}^T$

Model # 2
$$\dot{\mathbf{x}} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u$$

 $y = \begin{bmatrix} 3 & 0 \end{bmatrix} \bar{\mathbf{x}}$

which is clearly different than the first model, and larger.

• But let's looks at the transfer function of the new model:

$$\overline{G}(s) = C(sI - A)^{-1}B + D$$

$$= \begin{bmatrix} 3 & 0 \end{bmatrix} \left(sI - \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{s+2} \\ \frac{1}{s+1} \end{bmatrix} = \frac{6}{s+2} \parallel$$

- This is a bit strange, because previously our figure of merit when comparing one state-space model to another (page 6–??) was whether they reproduced the same same transfer function
 - Now we have two very different models that result in the same transfer function
 - Note that I showed the second model as having 1 extra state, but I could easily have done it with 99 extra states!!
- So what is going on?
 - A clue is that the dynamics associated with the second state of the model x_2 were eliminated when we formed the product

$$\bar{G}(s) = \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{s+2} \\ \frac{1}{s+1} \end{bmatrix}$$

because the A is decoupled and there is a zero in the C matrix

• Which is exactly the same as saying that there is a **pole-zero** cancelation in the transfer function $\tilde{G}(s)$

$$\frac{6}{s+2} = \frac{6(s+1)}{(s+2)(s+1)} \triangleq \tilde{G}(s)$$

- Note that model #2 is one possible state-space model of $\tilde{G}(s)$ (has 2 poles)
- For this system we say that the dynamics associated with the second state are **unobservable** using this sensor (defines C matrix).
 - There could be a lot "motion" associated with x_2 , but we would be unaware of it using this sensor.

• There is an analogous problem on the input side as well. Consider:

Model # 1
$$\dot{x} = -2x + 2u$$

 $y = 3x$
with $\bar{\mathbf{x}} = \begin{bmatrix} x & x_2 \end{bmatrix}^T$
Model # 3 $\dot{\mathbf{x}} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u$
 $y = \begin{bmatrix} 3 & 2 \end{bmatrix} \bar{\mathbf{x}}$

which is also **clearly different** than model #1, and has a different form from the second model.

$$\hat{G}(s) = \begin{bmatrix} 3 & 2 \end{bmatrix} \left(sI - \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{s+2} & \frac{2}{s+1} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{6}{s+2} \parallel$$

- Once again the dynamics associated with the pole at s = -1 are canceled out of the transfer function.
 - But in this case it occurred because there is a 0 in the B matrix
- So in this case we can "see" the state x_2 in the output $C = \begin{bmatrix} 3 & 2 \end{bmatrix}$, but we cannot "influence" that state with the input since

$$B = \begin{bmatrix} 2\\0 \end{bmatrix}$$

• So we say that the dynamics associated with the second state are **uncontrollable** using this actuator (defines the *B* matrix).

• Of course it can get even worse because we could have

$$\dot{\mathbf{x}} = \begin{bmatrix} -2 & 0\\ 0 & -1 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 2\\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 3 & 0 \end{bmatrix} \bar{\mathbf{x}}$$

• So now we have

$$\widetilde{G(s)} = \begin{bmatrix} 3 & 0 \end{bmatrix} \left(sI - \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{s+2} & \frac{0}{s+1} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{6}{s+2} \parallel$$

- Get same result for the transfer function, but now the dynamics associated with x_2 are both unobservable and uncontrollable.
- **Summary:** Dynamics in the state-space model that are **uncon-trollable**, **unobservable**, or **both** do not show up in the transfer function.
- Would like to develop models that **only have** dynamics that are both **controllable** and **observable**
 - \Rightarrow called a **minimal realization**
 - A state space model that has the lowest possible order for the given transfer function.
- But first need to develop tests to determine if the models are observable and/or controllable

Observability

- Definition: An LTI system is observable if the initial state x(0) can be uniquely deduced from the knowledge of the input u(t) and output y(t) for all t between 0 and any finite T > 0.
 - If $\mathbf{x}(0)$ can be deduced, then we can reconstruct $\mathbf{x}(t)$ exactly because we know $\mathbf{u}(t) \Rightarrow$ we can find $\mathbf{x}(t) \forall t$.
 - Thus we need only consider the zero-input (homogeneous) solution to study observability.

$$\mathbf{y}(t) = C e^{At} \mathbf{x}(0)$$

- This definition of observability is consistent with the notion we used before of being able to "see" all the states in the output of the decoupled examples
 - ROT: For those decoupled examples, if part of the state cannot be "seen" in y(t), then it would be impossible to deduce that part of x(0) from the outputs y(t).

- Definition: A state $\mathbf{x}^* \neq 0$ is said to be unobservable if the zero-input solution $\mathbf{y}(t)$, with $\mathbf{x}(0) = \mathbf{x}^*$, is zero for all $t \ge 0$
 - \bullet Equivalent to saying that \mathbf{x}^{\star} is an unobservable state if

$$Ce^{At}\mathbf{x}^{\star} = 0 \ \forall \ t \ge 0$$

• For the problem we were just looking at, consider Model #2 with $\mathbf{x}^* = \begin{bmatrix} 0 & 1 \end{bmatrix}^T \neq 0$, then

$$\dot{\bar{\mathbf{x}}} = \begin{bmatrix} -2 & 0\\ 0 & -1 \end{bmatrix} \bar{\mathbf{x}} + \begin{bmatrix} 2\\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 3 & 0 \end{bmatrix} \bar{\mathbf{x}}$$

SO

$$Ce^{At}\mathbf{x}^{\star} = \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} e^{-2t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 3e^{-2t} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \forall t$$

So, $\mathbf{x}^{\star} = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ is an unobservable state for this system.

• But that is as expected, because we knew there was a problem with the state x_2 from the previous analysis

- Theorem: An LTI system is observable iff it has no unobservable states.
 - We normally just say that the **pair** (A,C) is observable.

- Pseudo-Proof: Let $\mathbf{x}^* \neq 0$ be an unobservable state and compute the outputs from the initial conditions $\mathbf{x}_1(0)$ and $\mathbf{x}_2(0) = \mathbf{x}_1(0) + \mathbf{x}^*$
 - Then

$$\mathbf{y}_1(t) = Ce^{At}\mathbf{x}_1(0)$$
 and $\mathbf{y}_2(t) = Ce^{At}\mathbf{x}_2(0)$

but

$$\mathbf{y}_2(t) = Ce^{At}(\mathbf{x}_1(0) + \mathbf{x}^*) = Ce^{At}\mathbf{x}_1(0) + Ce^{At}\mathbf{x}^*$$
$$= Ce^{At}\mathbf{x}_1(0) = \mathbf{y}_1(t)$$

• Thus 2 different initial conditions give the same output $\mathbf{y}(t)$, so it would be impossible for us to deduce the actual initial condition of the system $\mathbf{x}_1(t)$ or $\mathbf{x}_2(t)$ given $\mathbf{y}_1(t)$

- Testing system observability by searching for a vector $\mathbf{x}(0)$ such that $Ce^{At}\mathbf{x}(0) = 0 \forall t$ is feasible, but very hard in general.
 - Better tests are available.

 $\bullet\,$ Theorem: The vector x^\star is an unobservable state iff

$$\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} \mathbf{x}^{\star} = 0$$

• **Pseudo-Proof:** If \mathbf{x}^* is an unobservable state, then by definition,

$$Ce^{At}\mathbf{x}^{\star} = 0 \quad \forall t \ge 0$$

But all the derivatives of Ce^{At} exist and for this condition to hold, all derivatives must be zero at t = 0. Then

$$\begin{split} Ce^{At} \mathbf{x}^{\star} \big|_{t=0} &= 0 \implies C\mathbf{x}^{\star} = 0 \\ \frac{d}{dt} Ce^{At} \mathbf{x}^{\star} \Big|_{t=0} &= 0 \implies CAe^{At} \mathbf{x}^{\star} \big|_{t=0} = CA\mathbf{x}^{\star} = 0 \\ \frac{d^2}{dt^2} Ce^{At} \mathbf{x}^{\star} \Big|_{t=0} &= 0 \implies CA^2 e^{At} \mathbf{x}^{\star} \big|_{t=0} = CA^2 \mathbf{x}^{\star} = 0 \\ &\vdots \\ \frac{d^k}{dt^k} Ce^{At} \mathbf{x}^{\star} \Big|_{t=0} &= 0 \implies CA^k e^{At} \mathbf{x}^{\star} \big|_{t=0} = CA^k \mathbf{x}^{\star} = 0 \end{split}$$

• We only need retain up to the $n - 1^{\text{th}}$ derivative because of the Cayley-Hamilton theorem.

• Simple test: Necessary and sufficient condition for observability is that

rank
$$\mathcal{M}_o \triangleq \operatorname{rank} \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} = n$$

- Why does this make sense?
 - The requirement for an unobservable state is that for $\mathbf{x}^{\star} \neq 0$

$$\mathcal{M}_o \mathbf{x}^\star = 0$$

- Which is equivalent to saying that \mathbf{x}^* is orthogonal to each row of \mathcal{M}_o .
- But if the rows of M_o are considered to be vectors and these span the full n-dimensional space, then it is not possible to find an n-vector x^{*} that is orthogonal to each of these.
- To determine if the n rows of M_o span the full n-dimensional space, we need to test their linear independence, which is equivalent to the rank test¹

¹Let M be a $m \times p$ matrix, then the rank of M satisfies:

^{1.} rank $M \equiv$ number of linearly independent columns of M

^{2.} rank $M \equiv$ number of linearly independent rows of M

^{3.} rank $M \leq \min\{m, p\}$

16.30 / 16.31 Feedback Control Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.