Topic \#8

16.30/31 Feedback Control Systems

State-Space Systems

- System Zeros
- Transfer Function Matrices for MIMO systems

Zeros in State Space Models

- Roots of transfer function numerator called the system zeros.
- Need to develop a similar way of defining/computing them using a state space model.
- Zero: generalized frequency s_{0} for which the system can have a non-zero input $\mathbf{u}(t)=\mathbf{u}_{0} e^{s_{0} t}$, but exactly zero output $\mathbf{y}(t) \equiv 0 \forall t$
- Note that there is a specific initial condition associated with this response \mathbf{x}_{0}, so the state response is of the form $\mathbf{x}(t)=\mathbf{x}_{0} e^{s_{0} t}$

$$
\mathbf{u}(t)=\mathbf{u}_{0} e^{s_{0} t} \Rightarrow \mathbf{x}(t)=\mathbf{x}_{0} e^{s_{0} t} \quad \Rightarrow \mathbf{y}(t) \equiv 0
$$

- Given $\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}$, substitute the above to get:

$$
\mathbf{x}_{0} s_{0} e^{s_{0} t}=A \mathbf{x}_{0} e^{s_{0} t}+B \mathbf{u}_{0} e^{s_{0} t} \Rightarrow\left[s_{0} I-A-B\right]\left[\begin{array}{l}
\mathbf{x}_{0} \\
\mathbf{u}_{0}
\end{array}\right]=0
$$

- Also have that $\mathbf{y}=C \mathbf{x}+D \mathbf{u}=0$ which gives:

$$
C \mathbf{x}_{0} e^{s_{0} t}+D \mathbf{u}_{0} e^{s_{0} t}=0 \quad \rightarrow \quad\left[\begin{array}{ll}
C & D
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{0} \\
\mathbf{u}_{0}
\end{array}\right]=0
$$

- So we must find the s_{0} that solves:

$$
\left[\begin{array}{cr}
s_{0} I-A & -B \\
C & D
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{0} \\
\mathbf{u}_{0}
\end{array}\right]=0
$$

- Is a generalized eigenvalue problem that can be solved in MATLAB using eig.m or tzero.m ${ }^{1}$

[^0]- There is a zero at the frequency s_{0} if there exists a non-trivial solution of

$$
\operatorname{det}\left[\begin{array}{cr}
s_{0} I-A & -B \\
C & D
\end{array}\right]=0
$$

- Compare with equation on page 6-??
- Key Point: Zeros have both direction $\left[\begin{array}{l}\mathbf{x}_{0} \\ \mathbf{u}_{0}\end{array}\right]$ and frequency s_{0}
- Just as we would associate a direction (eigenvector) with each pole (frequency λ_{i})
- Example: $G(s)=\frac{s+2}{s^{2}+7 s+12}$

$$
A=\left[\begin{array}{cc}
-7 & -12 \\
1 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \quad D=0
$$

$\operatorname{det}\left[\begin{array}{cc}s_{0} I-A & -B \\ C & D\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}s_{0}+7 & 12 & -1 \\ -1 & s_{0} & 0 \\ 1 & 2 & 0\end{array}\right]$

$$
=\left(s_{0}+7\right)(0)+1(2)+1\left(s_{0}\right)=s_{0}+2=0
$$

so there is clearly a zero at $s_{0}=-2$, as we expected. For the directions, solve:

$$
\left[\begin{array}{ccc}
s_{0}+7 & 12 & -1 \\
-1 & s_{0} & 0 \\
1 & 2 & 0
\end{array}\right]_{s_{0}=-2}\left[\begin{array}{c}
x_{01} \\
x_{02} \\
u_{0}
\end{array}\right]=\left[\begin{array}{rrr}
5 & 12 & -1 \\
-1 & -2 & 0 \\
1 & 2 & 0
\end{array}\right]\left[\begin{array}{c}
x_{01} \\
x_{02} \\
u_{0}
\end{array}\right]=0 ?
$$

gives $x_{01}=-2 x_{02}$ and $u_{0}=2 x_{02}$ so that with $x_{02}=1$

$$
\mathbf{x}_{0}=\left[\begin{array}{r}
-2 \\
1
\end{array}\right] \quad \text { and } \quad u=2 e^{-2 t}
$$

- Further observations: apply the specified control input in the frequency domain, so that

$$
Y_{1}(s)=G(s) U(s)
$$

where $u=2 e^{-2 t}$, so that $U(s)=\frac{2}{s+2}$

$$
Y_{1}(s)=\frac{s+2}{s^{2}+7 s+12} \cdot \frac{2}{s+2}=\frac{2}{s^{2}+7 s+12}
$$

Say that $s=-2$ is a blocking zero or a transmission zero.

- The response $Y_{1}(s)$ is clearly non-zero, but it does not contain a component at the input frequency $s=-2$.
- That input has been "blocked".
- Note that the output response left in $Y_{1}(s)$ is of a very special form it corresponds to the (negative of the) response you would see from the system with $u(t)=0$ and $\mathbf{x}_{0}=\left[\begin{array}{ll}-2 & 1\end{array}\right]^{T}$

$$
\begin{aligned}
Y_{2}(s) & =C(s I-A)^{-1} \mathbf{x}_{0} \\
& =\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{cc}
s+7 & 12 \\
-1 & s
\end{array}\right]^{-1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & -2
\end{array}\right]\left[\begin{array}{cc}
s & -12 \\
1 & s+7
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \frac{1}{s^{2}+7 s+12} \\
& =\frac{-2}{s^{2}+7 s+12}
\end{aligned}
$$

- So then the total output is $Y(s)=Y_{1}(s)+Y_{2}(s)$ showing that $Y(s)=$ $0 \rightarrow y(t)=0$, as expected.

Simpler Test

- Simpler test using transfer function matrix:
- If z is a zero with (right) direction $\left[\zeta^{T}, \tilde{u}^{T}\right]^{T}$, then

$$
\left[\begin{array}{cr}
z I-A & -B \\
C & D
\end{array}\right]\left[\begin{array}{l}
\zeta \\
\tilde{u}
\end{array}\right]=0
$$

- If z not an eigenvalue of A, then $\zeta=(z I-A)^{-1} B \tilde{u}$, which gives

$$
\left[C(z I-A)^{-1} B+D\right] \tilde{u}=G(z) \tilde{u}=0
$$

- Which implies that $G(s)$ loses rank at $s=z$
- If $G(s)$ is square, can find the zero frequencies by solving:

$$
\operatorname{det} \mathbf{G}(\mathbf{s})=\mathbf{0}
$$

- If any of the resulting roots are also eigenvalues of A, need to re-check the generalized eigenvalue matrix condition.
- Need to be very careful when we find MIMO zeros that have the same frequency as the poles of the system, because it is not obvious that a pole/zero cancelation will occur (for MIMO systems).
- The zeros have a directionality associated with them, and that must "agree" as well, or else you do not get cancelation
- More on this topic later when we talk about controllability and observability

Transfer Function Matrix

- Note that the transfer function matrix (TFM) notion is a MIMO generalization of the SISO transfer function
- It is a matrix of transfer functions

$$
G(s)=\left[\begin{array}{lll}
g_{11}(s) & \cdots & g_{1 m}(s) \\
& \ddots & \\
g_{p 1}(s) & \cdots & g_{p m}(s)
\end{array}\right]
$$

- $g_{i j}(s)$ relates input of actuator j to output of sensor i.
- It is relatively easy to go from a state-space model to a TFM, but not obvious how to go back the other way.
- Simplest approach is to develop a state space model for each element of $g_{i j}(s)$ in the form $A_{i j}, B_{i j}, C_{i j}, D_{i j}$, and then assemble (if TFM is $p \times m$)

$$
A=\left[\begin{array}{ccccc}
A_{11} & & & & \\
& \ddots & & & \\
& & A_{1 m} & & \\
& & & A_{21} & \\
& & & & \vdots \\
& & & & \\
& & & & A_{p m}
\end{array}\right] B=\left[\begin{array}{ccc}
B_{11} & & \\
& \ddots & \\
& & B_{1 m} \\
B_{21} & & \\
& \vdots & \\
& & B_{p m}
\end{array}\right]
$$

$C=\left[\begin{array}{ccccccccc}C_{11} & \cdots & C_{1 m} & & & & & & \\ & & & C_{21} & \ddots & C_{2 m} & & & \\ & & & & & \vdots & & & \\ & & & & & & C_{p 1} \cdots & C_{p m}\end{array}\right] \quad D=\left[D_{i j}\right]$

- One issue is how many poles are needed - this realization might be inefficient (larger than necessary).
- Related to McMillan degree, which for a proper system is the degree of the characteristic polynomial obtained as the least common denominator of all minors of $G(s) .{ }^{2}$
- Subtle point: consider a $m \times m$ matrix A, then the standard minors formed by deleting 1 row and column and taking the determinant of the resulting matrix are called the $m-1^{\text {th }}$ order minors of A.
- To consider all minors of A, must consider all possible orders, i.e. by selecting $j \leq m$ subsets of the rows and columns and taking the resulting determinant.
- Given an $n \times m$ matrix A with entries $a_{i j}$, a minor of A is the determinant of a smaller matrix formed from its entries by selecting only some of the rows and columns.
- Let $K=\left\{\begin{array}{llll}k_{1} & k_{2} & \ldots & k_{p}\end{array}\right\}$ and $L=\left\{\begin{array}{llll}l_{1} & l_{2} & \ldots & l_{p}\end{array}\right\}$ be subsets of $\{1,2, \ldots, n\}$ and $\{1,2, \ldots, m\}$, respectively.
- Indices are chosen so $k_{1}<k_{2} \cdots<k_{p}$ and $l_{1}<l_{2} \cdots<l_{p}$.
- p th order minor defined by K and L is the determinant ${ }^{3}$

$$
[A]_{K, L}=\left|\begin{array}{cccc}
a_{k_{1} l_{1}} & a_{k_{1} l_{2}} & \ldots & a_{k_{1} l_{p}} \\
a_{k_{2} l_{1}} & a_{k_{2} l_{2}} & \ldots & a_{k_{2} l_{p}} \\
\vdots & \ddots & & \\
a_{k_{p} l_{1}} & a_{k_{p} l_{2}} & \ldots & a_{k_{p} l_{p}}
\end{array}\right|
$$

- If $p=m=n$ then the minor is simply the determinant of the matrix.
- In a nutshell what this means is that a 2×2 matrix has 4 order- 1 minors and 1 order- 2 minor to consider.

[^1]
Gilbert's Realization

- One approach: rewrite the TFM as

$$
G(s)=\frac{H(s)}{d(s)}
$$

where $d(s)$ is the least common multiple of the denominators of the entries of $G(s)$.

- Note difference from the discussion about the McMillan degree.
- $d(s)$ looks like a characteristic equation for this system, but it is not \Rightarrow it does not accurately reflect number of poles needed.
- For proper systems for which $d(s)$ has distinct roots, can use Gilbert's realization.
- Apply a partial fraction expansion to each of the elements of TFM $G(s)$ and collect residues for each distinct pole ${ }^{4}$.

$$
G(s)=\sum_{i}^{N_{m}} \frac{R_{i}}{s-p_{i}} \quad \text { where } \quad R_{i}=\lim _{s \rightarrow p_{i}}\left(s-p_{i}\right) G(s)
$$

- Then sum of the ranks of matrices R_{i} gives the McMillan degree

[^2]- Can develop a state space realization by analyzing each element of the partial fraction expansion
- Set $R_{i}=C_{i} B_{i}$, and find appropriate B_{i} and C_{i}
- Form A_{i} by placing the poles on the diagonal as many times as needed (determined by rank of R_{i})
- Form state space model:

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{lll}
A_{1} & & \\
& \ddots & \\
& & A_{N_{m}}
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{N_{m}}
\end{array}\right] \mathbf{u} \\
& \mathbf{y}=\left[\begin{array}{lll}
C_{1} & \cdots & C_{N_{m}}
\end{array}\right] \mathbf{x}
\end{aligned}
$$

Zero Example 1

- $\operatorname{TFM} G(s)=$

$$
\left[\begin{array}{cc}
\frac{1}{s+2} & \frac{1}{s+2} \\
\frac{1}{s-2} & \frac{s-2}{(s+1)(s+2)}
\end{array}\right]
$$

- To compute the McMillan degree for this system, form all minors (4 order-1 and 1 order-2):

$$
\left\{\frac{1}{s+2}, \quad \frac{1}{s+2}, \quad \frac{1}{s-2}, \frac{s-2}{(s+1)(s+2)}, \frac{2-7 s}{(s-2)(s+1)(s+2)^{2}}\right\}
$$

- To find LCD (least common multiple of denominators), pull out smallest polynomial that leaves all terms with no denominator:

$$
\begin{gathered}
\frac{1}{(s-2)(s+1)(s+2)^{2}}\{(s-2)(s+1)(s+2),(s-2)(s+1)(s+2) \\
\left.(s+1)\left(s+2^{2}\right), \quad(s-2)^{2}(s+2), \quad 2-7 s\right\}
\end{gathered}
$$

- So we expect a fourth order system with poles at $s=2, s=-2$ (two), and $s=-1$
- Compare with the Gilbert realization, find $d(s)$:

$$
\begin{aligned}
G(s) & =\frac{1}{(s+1)(s+2)(s-2)}\left[\begin{array}{cc}
(s+1)(s-2) & (s+1)(s-2) \\
(s+1)(s+2) & (s-2)^{2}
\end{array}\right] \\
& =\frac{1}{s+1}\left[\begin{array}{rr}
0 & 0 \\
0 & -3
\end{array}\right]+\frac{1}{s-2}\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\frac{1}{(s+2)}\left[\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right]
\end{aligned}
$$

- Note that the rank of the last 2×2 matrix is 2
- So the system order is 4 - we need to have two poles $s=-2$.
- So the system model for the example is

$$
\begin{array}{lll}
A_{1}=[-1] & B_{1}=\left[\begin{array}{ll}
0 & -3
\end{array}\right] & C_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
A_{2}=\left[\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right] & B_{2}=\left[\begin{array}{ll}
1 & 1 \\
0 & 4
\end{array}\right] & C_{2}=I_{2} \\
A_{3}=\left[\begin{array}{lll}
2
\end{array}\right] & B_{3}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] & C_{3}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}
$$

- Note, realization model on 8-5 would be 5th order, not 4th.

Code: MIMO Models

```
% basic MIMO TFM to SS
%
G=tf({1 1;1 [1 -2]},{[1 2] [1 2];[{1 -2] [1 3 2]});
% find residue matrices of the 3 poles
R1=tf([[1 1],1)*G;R1=minreal(R1);R1=evalfr(R1,-1)
R2=tf([1 2],1)*G;R2=minreal(R2);R2=evalfr(R2,-2)
R3=tf([1 -2],1)*G;R3=minreal (R3);R3=evalfr(R3,2)
% form SS model for 3 poles using the residue matrices
A1=[-1];B1=R1 (2,:);C1=[0 1]';
A2=[-2 0;0 -2];B2=R2;C2=eye(2);
A3=[2];B3=R3(2,:);C3=[0 1]';
% combine submodels
A=zeros(4);A(1:1,1:1)=A1;A(2:3,2:3)=A2;A(4,4)=A3;
B=[B1;B2;B3];
C=[C1 C2 C3];
syms s
Gn=simple(C*inv(s*eye(4)-A)*B);
% alternative is to make a SS model of each g-{ij}
A11=-2;B11=1;C11=1;
A12=-2;B12=1;C12=1;
A21=2;B21=1;C21=1;
A22=[[-3 -2;1 0];B22=[2 0]';C22=[0.5 -1];
% and then combine
AA=zeros (5);AA (1, 1)=A11;AA (2, 2)=A12;AA (3,3)=A21; AA (4:5,4:5)=A22;
BB}=[\textrm{B}11\textrm{B}11*0;\textrm{B}12*0 B12;B21 B21*0;B22*0 B22];
CC=[C11 C12 zeros(1,3);zeros(1,2) C21 C22];
GGn=simple(CC*inv(s*eye (5)-AA) *BB);
Gn, GGn
```


Zero Example 2

- $\operatorname{TFM} G(s)=$

$$
\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{(s+1)^{2}} \\
\frac{1}{(s+1)^{3}} & \frac{1}{(s+1)^{4}}
\end{array}\right]
$$

- McMillan Degree: find all minors of $G(s)$

$$
\frac{1}{s+1}, \quad \frac{1}{(s+1)^{2}}, \quad \frac{1}{(s+1)^{3}}, \quad \frac{1}{(s+1)^{4}}, \quad 0
$$

- To find LCD (least common multiple of denominators), pull out smallest polynomial that leaves all terms with no denominator:

$$
\frac{1}{(s+1)^{4}}\left\{(s+1)^{3}, \quad(s+1)^{2}, \quad(s+1), \quad 1\right\}
$$

- So the LCD is $(s+1)^{4}$ and the McMillan degree is 4 - we expect the minimal state space model to have 4 poles at $s=-1$.
- Gilbert approach as given cannot be applied directly since $d(s)=$ $\frac{1}{(s+1)^{4}}$ has repeated roots
- See Matlab code for model development

$$
A=\left[\begin{array}{rrrrrrrrrr}
-1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & -3.00 & -1.50 & -0.50 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 2.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & -2.00 & -1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -4.00 & -1.50 & -1.00 & -0.50 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 4.00 & 0.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 1.00 & 0.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.50 & 0.00
\end{array}\right] B=\left[\begin{array}{ll}
1.00 & 0.00 \\
0.50 & 0.00 \\
0.00 & 0.00 \\
0.00 & 0.00 \\
0.00 & 1.00 \\
0.00 & 0.00 \\
0.00 & 0.50 \\
0.00 & 0.00 \\
0.00 & 0.00 \\
0.00 & 0.00
\end{array}\right]
$$

- Note that $\lambda_{i}(A)=-1$ - there are 10 poles there. So this is clearly not minimal since the order is 10 , not the 4 we expected.
- Matlab command minreal can be used to convert to a minimal realization.

$$
\begin{gathered}
A=\left[\begin{array}{rrrr}
-0.40 & -0.16 & -1.00 & 0.01 \\
0.32 & -1.49 & -0.06 & 1.07 \\
0.50 & -1.06 & -1.17 & -0.39 \\
-0.07 & 0.16 & 0.02 & -0.94
\end{array}\right] \quad B=\left[\begin{array}{rrr}
0.23 & -0.02 \\
-0.97 & 0.36 \\
-0.05 & -0.31 \\
0.01 & -0.75
\end{array}\right] \\
C=\left[\begin{array}{rrrr}
0.18 & -1.01 & 0.35 & -0.63 \\
-1.11 & -0.29 & 0.43 & -0.28
\end{array}\right] \quad D=\left[\begin{array}{ll}
0.00 & 0.00 \\
0.00 & 0.00
\end{array}\right]
\end{gathered}
$$

- New model has 6 states removed - so the minimal degree is 4 as expected.

Code: Zeros (zero example1.m)

```
G1=ss(tf({\begin{array}{llll}{1}&{1;1}&{1}\end{array}},{[[1 1] conv([1 1],[[1 1]);conv([llll,conv([llll,[1 1])) ...
    conv([1 1],conv([1 1],conv([11 1],[\begin{array}{ll}{1}&{1}\end{array}])))})); %
[a,b,c,d]=ssdata(G1);
latex(a,'%.2f','nomath') %
latex(b,'%.2f','nomath') %
latex(c,'%.2f','nomath') %
7 latex(d,'%.2f','nomath') %
G2=minreal(G1);[a2,b2,c2,d2]=ssdata(G2);
9 latex(a2,'%.2f','nomath') %
latex(b2,'%.2f','nomath') %
latex(c2,'%.2f','nomath') %
latex(d2,'%.2f','nomath') %
```


Zero Example 3

- TFM $G(s)=\left[\begin{array}{cc}\frac{2 s+3}{s^{2}+3 s+2} & \frac{3 s+5}{s^{2}+3 s+2} \\ \frac{-1}{(s+1)} & 0\end{array}\right]$
- McMillan Degree: find all minors of $G(s)$

$$
\frac{2 s+3}{s^{2}+3 s+2}, \quad \frac{3 s+5}{s^{2}+3 s+2}, \quad \frac{-1}{(s+1)}, \quad \frac{-(3 s+5)}{(s+1)\left(s^{2}+3 s+2\right)}
$$

- To find LCD, pull out smallest polynomial that leaves all terms with no denominator:

$$
\frac{1}{\left(s^{2}+3 s+2\right)(s+1)}\left\{(2 s+3)(s+1), \quad(3 s+5)(s+1), \quad-\left(s^{2}+3 s+2\right), \quad-(3 s+5)\right\}
$$

- So the LCD is $\left(s^{2}+3 s+2\right)(s+1)=(s+1)^{2}(s+2)$
- The McMillan degree is 3 - we expect the minimal state space model to have 3 poles.
- For Gilbert approach, we rewrite

$$
G(s)=\frac{\left[\begin{array}{cc}
2 s+3 & 3 s+5 \\
-(s+2) & 0
\end{array}\right]}{(s+1)(s+2)}=\frac{R_{1}}{s+1}+\frac{R_{2}}{s+2}
$$

where

$$
\begin{aligned}
& R_{1}=\lim _{s \rightarrow-1}(s+1) G(s)=\lim _{s \rightarrow-1}\left[\begin{array}{cc}
\frac{2 s+3}{s+2} & \frac{3 s+5}{s+2} \\
-1 & 0
\end{array}\right]=\left[\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right] \\
& R_{2}=\lim _{s \rightarrow-2}(s+2) G(s)=\lim _{s \rightarrow-2}\left[\begin{array}{cc}
\frac{2 s+3}{s+1} & \frac{3 s+5}{s+1} \\
-\frac{s+2}{s+1} & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

which also indicates that we will have a third order system with 2 poles at $s=-1$ and 1 at $s=-2$.

- For the state space model, note that

$$
\begin{aligned}
& R_{1}=\left[\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=C_{1} B_{1} \\
& R_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]=C_{2} B_{2}
\end{aligned}
$$

giving

$$
\begin{aligned}
& A=\left[\begin{array}{cc|c}
-1 & 0 & 0 \\
0 & -1 & 0 \\
\hline 0 & 0 & -2
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
\hline 1 & 1
\end{array}\right] \\
& C=\left[\begin{array}{rr|r}
1 & 2 & 1 \\
-1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- From Matlab you get:

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
-1.00 & 0.00 & 0.00 \\
0.00 & -2.00 & 0.00 \\
0.00 & 0.00 & -1.00
\end{array}\right] \quad B=\left[\begin{array}{ll}
0.56 & 1.12 \\
0.35 & 0.35 \\
0.50 & 0.00
\end{array}\right] \\
& C=\left[\begin{array}{lll}
1.79 & 2.83 & 0.00 \\
0.00 & 0.00 & -2.00
\end{array}\right] \quad D=\left[\begin{array}{ll}
0.00 & 0.00 \\
0.00 & 0.00
\end{array}\right]
\end{aligned}
$$

Code: Zeros (zero example2.m)

```
1 G1=ss(tf({[[2 3] [3 5 5];-1 0},{[11 3 2] [ll 3 2];[[1 1] 1})); %
G1=canon(G1,'modal')
3 [a,b,c,d]=ssdata (G1);
4 latex(a,'%.2f','nomath')
5 latex(b,'%.2f','nomath') %
6 latex(c,'%.2f','nomath') %
7 latex(d,'%.2f','nomath') %
```


Summary of Zeros and TFMs

- Great feature of solving for zeros using the generalized eigenvalue matrix condition is that it can be used to find MIMO zeros of a system with multiple inputs/outputs.

$$
\operatorname{det}\left[\begin{array}{cr}
s_{0} I-A & -B \\
C & D
\end{array}\right]=0
$$

- Note: we have to be careful how to analyze these TFM's.
- Just looking at individual transfer functions is not useful.
- Need to look at system as a whole - use the singular values of $G(s)$
- Will see later the conditions to determine if the order of a state space model is minimal.

MIT OpenCourseWare
http://ocw.mit.edu

16.30 / 16.31 Feedback Control Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ MATLAB is a trademark of the Mathworks Inc.

[^1]: ${ }^{2}$ Lowest order polynomial that can be divided cleanly by all denominators of the minors of $G(s)$.
 ${ }^{3}$ See here for details

[^2]: ${ }^{4}$ Generalizations of this Gilbert's realization approach exist if the $g_{i j}$ have repeated roots.

