Topic \#7

16.30/31 Feedback Control Systems

State-Space Systems

- What are the basic properties of a state-space model, and how do we analyze these?
- Time Domain Interpretations
- System Modes

Time Response

- Can develop a lot of insight into the system response and how it is modeled by computing the time response $\mathbf{x}(t)$
- Homogeneous part
- Forced solution

- Homogeneous Part

$$
\dot{\mathbf{x}}=A \mathbf{x}, \quad \mathbf{x}(0) \text { known }
$$

- Take Laplace transform

$$
X(s)=(s I-A)^{-1} \mathbf{x}(0)
$$

so that

$$
\mathbf{x}(t)=\mathcal{L}^{-1}\left[(s I-A)^{-1}\right] \mathbf{x}(0)
$$

- But can show

$$
\begin{aligned}
(s I-A)^{-1} & =\frac{I}{s}+\frac{A}{s^{2}}+\frac{A^{2}}{s^{3}}+\ldots \\
\text { so } \mathcal{L}^{-1}\left[(s I-A)^{-1}\right] & =I+A t+\frac{1}{2!}(A t)^{2}+\ldots \\
& =e^{A t} \\
\Rightarrow \mathbf{x}(t) & =e^{A t} \mathbf{x}(0)
\end{aligned}
$$

- $e^{A t}$ is a special matrix that we will use many times in this course
- Transition matrix or Matrix Exponential
- Calculate in MATLAB using expm.m and not exp.m ${ }^{1}$
- Note that $e^{(A+B) t}=e^{A t} e^{B t}$ iff $A B=B A$
- Example: $\dot{\mathbf{x}}=A \mathbf{x}$, with

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right] \\
(s I-A)^{-1} & =\left[\begin{array}{cc}
s & -1 \\
2 & s+3
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
s+3 & 1 \\
-2 & s
\end{array}\right] \frac{1}{(s+2)(s+1)} \\
& =\left[\begin{array}{cc}
\frac{2}{s+1}-\frac{1}{s+2} & \frac{1}{s+1}-\frac{1}{s+2} \\
\frac{-1}{s+1} & \frac{-1}{s+2} \\
s+1 & \frac{e^{-t}}{s+2}-e^{-2 t}
\end{array}\right] \\
e^{A t} & =\left[\begin{array}{cc}
2 e^{-t}-e^{-2 t} & -e^{-t}+2 e^{-2 t}
\end{array}\right]
\end{aligned}
$$

- We will say more about $e^{A t}$ when we have said more about A (eigenvalues and eigenvectors)
- Computation of $e^{A t}=\mathcal{L}^{-1}\left\{(s I-A)^{-1}\right\}$ straightforward for a 2-state system
- More complex for a larger system, see this paper

SS: Forced Solution

- Forced Solution

- Consider a scalar case:

$$
\begin{aligned}
\dot{x} & =a x+b u, \quad x(0) \text { given } \\
\Rightarrow x(t) & =e^{a t} x(0)+\int_{0}^{t} e^{a(t-\tau)} b u(\tau) d \tau
\end{aligned}
$$

where did this come from?

1. $\dot{x}-a x=b u$
2. $e^{-a t}[\dot{x}-a x]=\frac{d}{d t}\left(e^{-a t} x(t)\right)=e^{-a t} b u(t)$
3. $\int_{0}^{t} \frac{d}{d \tau} e^{-a \tau} x(\tau) d \tau=e^{-a t} x(t)-x(0)=\int_{0}^{t} e^{-a \tau} b u(\tau) d \tau$

- Forced Solution - Matrix case:

$$
\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}
$$

where \mathbf{x} is an n-vector and \mathbf{u} is a m-vector

- Just follow the same steps as above to get

$$
\mathbf{x}(t)=e^{A t} \mathbf{x}(0)+\int_{0}^{t} e^{A(t-\tau)} B \mathbf{u}(\tau) d \tau
$$

and if $\mathbf{y}=C \mathbf{x}+D \mathbf{u}$, then

$$
\mathbf{y}(t)=C e^{A t} \mathbf{x}(0)+\int_{0}^{t} C e^{A(t-\tau)} B \mathbf{u}(\tau) d \tau+D \mathbf{u}(t)
$$

- $C e^{A t} \mathbf{x}(0)$ is the initial response
- $C e^{A(t)} B$ is the impulse response of the system.
- Have seen the key role of $e^{A t}$ in the solution for $\mathbf{x}(t)$
- Determines the system time response
- But would like to get more insight!
- Consider what happens if the matrix A is diagonalizable, i.e. there exists a T such that

$$
T^{-1} A T=\Lambda \text { which is diagonal } \Lambda=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

Then

$$
e^{A t}=T e^{\Lambda t} T^{-1}
$$

where

$$
e^{\Lambda t}=\left[\begin{array}{lll}
e^{\lambda_{1} t} & & \\
& \ddots & \\
& & e^{\lambda_{n} t}
\end{array}\right]
$$

- Follows since $e^{A t}=I+A t+\frac{1}{2!}(A t)^{2}+\ldots$ and that $A=T \Lambda T^{-1}$, so we can show that

$$
\begin{aligned}
e^{A t} & =I+A t+\frac{1}{2!}(A t)^{2}+\ldots \\
& =I+T \Lambda T^{-1} t+\frac{1}{2!}\left(T \Lambda T^{-1} t\right)^{2}+\ldots \\
& =T e^{\Lambda t} T^{-1}
\end{aligned}
$$

- This is a simpler way to get the matrix exponential, but how find T and λ ?
- Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

- Recall that the eigenvalues of A are the same as the roots of the characteristic equation (page 6-7)
- λ is an eigenvalue of A if

$$
\operatorname{det}(\lambda I-A)=0
$$

which is true iff there exists a nonzero v (eigenvector) for which

$$
(\lambda I-A) v=0 \quad \Rightarrow \quad A v=\lambda v
$$

- Repeat the process to find all of the eigenvectors. Assuming that the n eigenvectors are linearly independent

$$
\begin{gathered}
A v_{i}=\lambda_{i} v_{i} \quad i=1, \ldots, n \\
A\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right] \\
A T=T \Lambda \Rightarrow \quad T^{-1} A T=\Lambda
\end{gathered}
$$

Jordan Form

- One word of caution: Not all matrices are diagonalizable

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \operatorname{det}(s I-A)=s^{2}
$$

only one eigenvalue $s=0$ (repeated twice). The eigenvectors solve

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]=0
$$

eigenvectors are of the form $\left[\begin{array}{c}r_{1} \\ 0\end{array}\right], r_{1} \neq 0 \rightarrow$ would only be one.

- Need Jordan Form to handle the case with repeated roots ${ }^{2}$
- Jordan form of matrix $A \in \mathbb{R}^{n \times n}$ is block diagonal:

$$
A=\left[\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & A_{k}
\end{array}\right] \quad \text { with } \quad A_{j}=\left[\begin{array}{ccccc}
\lambda_{j} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{j} & 1 & & 0 \\
\vdots & & \ddots & & 1 \\
0 & 0 & 0 & \cdots & \lambda_{j}
\end{array}\right]
$$

- Observation: any matrix can be transformed into Jordan form with the eigenvalues of A determining the blocks A_{j}.
- The matrix exponential of a Jordan form matrix is then given by

$$
e^{A t}=\left[\begin{array}{cccc}
e^{A_{1} t} & 0 & \cdots & 0 \\
0 & e^{A_{2} t} & & 0 \\
& & \ddots & \\
0 & 0 & & e^{A_{k} t}
\end{array}\right] \quad \text { with } \quad e^{A_{j} t}=\left[\begin{array}{ccccc}
1 & t & t^{2} / 2! & \cdots & \frac{t^{n-1}}{(n-1)!} \\
0 & 1 & t & \cdots & \frac{t^{n-2}}{(n-2)!} \\
0 & 0 & 1 & \cdots & \\
\vdots & & & \ddots & t \\
0 & 0 & & \cdots & 1
\end{array}\right] e^{\lambda_{j} t}
$$

EV Mechanics

- Consider $A=\left[\begin{array}{ll}-1 & 1 \\ -8 & 5\end{array}\right]$

$$
\begin{aligned}
(s I-A) & =\left[\begin{array}{cc}
s+1 & -1 \\
8 & s-5
\end{array}\right] \\
\operatorname{det}(s I-A) & =(s+1)(s-5)+8=s^{2}-4 s+3=0
\end{aligned}
$$

so the eigenvalues are $s_{1}=1$ and $s_{2}=3$

- Eigenvectors $(s I-A) v=0$

$$
\begin{gathered}
\left(s_{1} I-A\right) v_{1}=\left[\begin{array}{cc}
s+1 & -1 \\
8 & s-5
\end{array}\right]_{s=1}\left[\begin{array}{l}
v_{11} \\
v_{21}
\end{array}\right]=0 \\
{\left[\begin{array}{ll}
2 & -1 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
v_{11} \\
v_{21}
\end{array}\right]=0 \quad 2 v_{11}-v_{21}=0, \Rightarrow v_{21}=2 v_{11}}
\end{gathered}
$$

v_{11} is then arbitrary $(\neq 0)$, so set $v_{11}=1$

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \left(s_{2} I-A\right) v_{2}=\left[\begin{array}{ll}
4 & -1 \\
8 & -2
\end{array}\right]\left[\begin{array}{l}
v_{12} \\
v_{22}
\end{array}\right]=0 \quad 4 v_{12}-v_{22}=0, \Rightarrow v_{22}=4 v_{12} \\
& v_{2}=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
\end{aligned}
$$

- Confirm that $A v_{i}=\lambda_{i} v_{i}$

Dynamic Interpretation

- Since $A=T \Lambda T^{-1}$, then

$$
e^{A t}=T e^{\Lambda t} T^{-1}=\left[\begin{array}{ccc}
\mid & & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{ccc}
e^{\lambda_{1} t} & & \\
& \ddots & \\
& & e^{\lambda_{n} t}
\end{array}\right]\left[\begin{array}{ccc}
-w_{1}^{T} & - \\
& \vdots & \\
-w_{n}^{T} & -
\end{array}\right]
$$

where we have written

$$
T^{-1}=\left[\begin{array}{cc}
-w_{1}^{T} & - \\
\vdots & \\
-w_{n}^{T} & -
\end{array}\right]
$$

which is a column of rows.

- Multiply this expression out and we get that

$$
e^{A t}=\sum_{i=1}^{n} e^{\lambda_{i} t} v_{i} w_{i}^{T}
$$

- Assume A diagonalizable, then $\dot{\mathbf{x}}=A \mathbf{x}, \mathbf{x}(0)$ given, has solution

$$
\begin{aligned}
\mathbf{x}(t) & =e^{A t} \mathbf{x}(0)=T e^{\Lambda t} T^{-1} \mathbf{x}(0) \\
& =\sum_{i=1}^{n} e^{\lambda_{i} t} v_{i}\left\{w_{i}^{T} \mathbf{x}(0)\right\} \\
& =\sum_{i=1}^{n} e^{\lambda_{i} t} v_{i} \beta_{i}
\end{aligned}
$$

- State solution is linear combination of the system modes $v_{i} e^{\lambda_{i} t}$
$e^{\lambda_{i} t}$ - Determines nature of the time response
v_{i} - Determines how each state contributes to that mode
β_{i} - Determines extent to which initial condition excites the mode
- Note that the v_{i} give the relative sizing of the response of each part of the state vector to the response.

$$
\begin{gathered}
v_{1}(t)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{-t} \quad \text { mode } 1 \\
v_{2}(t)=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right] e^{-3 t} \quad \text { mode } 2
\end{gathered}
$$

- Clearly $e^{\lambda_{i} t}$ gives the time modulation
- λ_{i} real - growing/decaying exponential response
- λ_{i} complex - growing/decaying exponential damped sinusoidal
- Bottom line: The locations of the eigenvalues determine the pole locations for the system, thus:
- They determine the stability and/or performance \& transient behavior of the system.
- It is their locations that we will want to modify when we start the control work

Diagonalization with Complex Roots

- If A has complex conjugate eigenvalues, the process is similar but a little more complicated.
- Consider a 2×2 case with A having eigenvalues $a \pm b \mathbf{i}$ and associated eigenvectors e_{1}, e_{2}, with $e_{2}=\bar{e}_{1}$. Then

$$
\begin{aligned}
A & =\left[e_{1} \mid e_{2}\right]\left[\begin{array}{cc}
a+b \mathbf{i} & 0 \\
0 & a-b \mathbf{i}
\end{array}\right]\left[e_{1} \mid e_{2}\right]^{-1} \\
& =\left[e_{1} \mid \bar{e}_{1}\right]\left[\begin{array}{cc}
a+b \mathbf{i} & 0 \\
0 & a-b \mathbf{i}
\end{array}\right]\left[e_{1} \mid \bar{e}_{1}\right]^{-1} \equiv T D T^{-1}
\end{aligned}
$$

- Now use the transformation matrix

$$
M=0.5\left[\begin{array}{rr}
1 & -\mathbf{i} \\
1 & \mathbf{i}
\end{array}\right] \quad M^{-1}=\left[\begin{array}{rr}
1 & 1 \\
\mathbf{i} & -\mathbf{i}
\end{array}\right]
$$

- Then it follows that

$$
\begin{aligned}
A & =T D T^{-1}=(T M)\left(M^{-1} D M\right)\left(M^{-1} T^{-1}\right) \\
& =(T M)\left(M^{-1} D M\right)(T M)^{-1}
\end{aligned}
$$

which has the nice structure:

$$
A=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}
$$

where all the matrices are real.

- With complex roots, diagonalization is to a block diagonal form.
- For this case we have that

$$
e^{A t}=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right]\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}
$$

- Note that

$$
\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- So for an initial condition to excite just this mode, can pick $\mathbf{x}(0)=$ $\left[\operatorname{Re}\left(e_{1}\right)\right]$, or $\mathbf{x}(0)=\left[\operatorname{Im}\left(e_{1}\right)\right]$ or a linear combination.
- Example $\mathbf{x}(0)=\left[\operatorname{Re}\left(e_{1}\right)\right]$

$$
\begin{aligned}
\mathbf{x}(t)= & e^{A t} \mathbf{x}(0)=\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right] \\
& {\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]^{-1}\left[\operatorname{Re}\left(e_{1}\right)\right] } \\
= & \left.\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right] e^{a t}\left[\begin{array}{rr}
\cos (b t) & \sin (b t) \\
-\sin (b t) & \cos (b t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
= & e^{a t}\left[\operatorname{Re}\left(e_{1}\right) \mid \operatorname{Im}\left(e_{1}\right)\right]\left[\begin{array}{r}
\cos (b t) \\
-\sin (b t)
\end{array}\right] \\
= & e^{a t}\left(\operatorname{Re}\left(e_{1}\right) \cos (b t)-\operatorname{Im}\left(e_{1}\right) \sin (b t)\right)
\end{aligned}
$$

which would ensure that only this mode is excited in the response

Example: Spring Mass System

- Classic example: spring mass system consider simple case first: $m_{i}=$ 1 , and $k_{i}=1$

$$
\begin{aligned}
& \mathrm{x}=\left[\begin{array}{llll}
z_{1} & z_{2} & z_{3} & \dot{z}_{1} \\
\dot{z}_{2} & \dot{z}_{3}
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
0 & I \\
-M^{-1} K & 0
\end{array}\right] \quad M=\operatorname{diag}\left(m_{i}\right) \\
& K=\left[\begin{array}{ccc}
k_{1}+k_{2}+k_{5} & -k_{5} & -k_{2} \\
-k_{5} & k_{3}+k_{4}+k_{5} & -k_{3} \\
-k_{2} & -k_{3} & k_{2}+k_{3}
\end{array}\right]
\end{aligned}
$$

- Eigenvalues and eigenvectors of the undamped system

$$
\begin{array}{ccc}
\lambda_{1}= \pm 0.77 \mathbf{i} & \lambda_{2}= \pm 1.85 \mathbf{i} & \lambda_{3}= \pm 2.00 \mathbf{i} \\
v_{1} & v_{2} & v_{3} \\
1.00 & 1.00 & 1.00 \\
1.00 & 1.00 & -1.00 \\
1.41 & -1.41 & 0.00 \\
\pm 0.77 \mathbf{i} & \pm 1.85 \mathbf{i} & \pm 2.00 \mathbf{i} \\
\pm 0.77 \mathbf{i} & \pm 1.85 \mathbf{i} & \mp 2.00 \mathbf{i} \\
\pm 1.08 \mathbf{i} & \mp 2.61 \mathbf{i} & 0.00
\end{array}
$$

- Initial conditions to excite just the three modes:

$$
\mathbf{x}_{i}(0)=\alpha_{1} \operatorname{Re}\left(v_{i}\right)+\alpha_{2} \operatorname{Im}\left(v_{i}\right) \quad \forall \alpha_{j} \in \mathbb{R}
$$

- Simulation using $\alpha_{1}=1, \alpha_{2}=0$
- Visualization important for correct physical interpretation
- Mode $1 \lambda_{1}= \pm 0.77 \mathbf{i}$

- Lowest frequency mode, all masses move in same direction
- Middle mass has higher amplitude motions z_{3}, motions all in phase

- Mode $2 \lambda_{2}= \pm 1.85 \mathbf{i}$

- Middle frequency mode has middle mass moving in opposition to two end masses
- Again middle mass has higher amplitude motions z_{3}

- Mode $3 \lambda_{3}= \pm 2.00 \mathbf{i}$

- Highest frequency mode, has middle mass stationary, and other two masses in opposition

- Eigenvectors that correspond to more constrained motion of the system are associated with higher frequency eigenvalues
- Result if we use a random input is a combination of all three modes

Code: Simulation of Spring Mass System Modes

```
% Simulate modal response for a spring mass system
% Jonathan How, MIT
% Fall 2009
alp1=1; % weighting choice on the IC
m=eye(3); % mass
k=[3-1 -1;-1 3 -1;-1 -1 2]; % stiffness
a=[m*0 eye(3);-inv(m)*k m*0];
[v,d]=eig(a);
t=[0:.01:20]; l1=1:25:length(t);
G=ss(a,zeros(6,1),zeros(1, 6),0);
% use the following to cll the function above
close all
set(0, 'DefaultAxesFontSize', 14, 'DefaultAxesFontWeight','demi')
set(0, 'DefaultTextFontSize', 14, 'DefaultTextFontWeight','demi')
set(0,'DefaultAxesFontName','arial');
set(0,'DefaultTextFontName','arial');set(0,'DefaultlineMarkerSize',10)
figure(1);clf
x0=alp1*real(v(:,1))+(1-alp1)*imag(v(:,1))
[y,t,x]=lsim(G,0*t,t,x0);
plot(t,x(:,1),'-','LineWidth',2);hold on
plot(t(l1),x(l1,2),'rx','LineWidth',2)
plot(t,x(:,3),'m-','LineWidth',2);hold off
xlabel('time');ylabel('displacement')
title(['Mode with \lambda=', num2str(imag(d(1,1))),' i'])
legend('z1','z2','z3')
print -dpng -r300 v1.png
figure(2);clf
x0=alp1*real (v(:,5))+(1-alp1)*imag(v(:,5))
[y,t,x]=lsim(G,0*t,t,x0);
plot(t,x(:,1),'-','LineWidth',2);hold on
plot(t(l1),x(l1,2),'rx','LineWidth',2)
plot(t,x(:,3),'m-','LineWidth',2);hold off
xlabel('time');ylabel('displacement')
title(['Mode with \lambda=', num2str(imag(d(5,5))),' i'])
legend('z1','z2','z3')
print -dpng -r300 v3.png
figure(3);clf
x0=alp1*real(v(:,3))+(1-alp1)*imag(v(:,3))
[y,t,x]=lsim(G,0*t,t,x0);
plot(t,x(:,1),'-','LineWidth',2);hold on
plot(t,x(:,2),'r-.','LineWidth',2)
plot(t,x(:,3),'m—','LineWidth',2);hold off
xlabel('time');ylabel('displacement')
title(['Mode with \lambda=', num2str(imag(d(3,3))),' i'])
legend('z1','z2','z3')
print -dpng -r300 v2.png
figure(4);clf
x0=[1 0 -1 0 0 0]';
[y,t,x]=lsim(G,0*t,t,x0);
plot(t,x(:,1),'-','LineWidth',2)
hold on
plot(t,x(:,2),'r-.','LineWidth',2)
plot(t,x(:,3),'m-','LineWidth',2)
hold off
xlabel('time');ylabel('displacement')
title(['Random Initial Condition'])
legend('z1','z2','z3')
print -dpng -r300 v4.png
```

MIT OpenCourseWare
http://ocw.mit.edu

16.30 / 16.31 Feedback Control Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

