Topic \#6

16.30/31 Feedback Control Systems

State-Space Systems

- What are state-space models?
- Why should we use them?
- How are they related to the transfer functions used in classical control design and how do we develop a state-space model?
- What are the basic properties of a state-space model, and how do we analyze these?

TF's to State-Space Models

- The goal is to develop a state-space model given a transfer function for a system $G(s)$.
- There are many, many ways to do this.
- But there are three primary cases to consider:

1. Simple numerator (strictly proper)

$$
\frac{y}{u}=G(s)=\frac{1}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}
$$

2. Numerator order less than denominator order (strictly proper)

$$
\frac{y}{u}=G(s)=\frac{b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}=\frac{N(s)}{D(s)}
$$

3. Numerator equal to denominator order (proper)

$$
\frac{y}{u}=G(s)=\frac{b_{0} s^{3}+b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}
$$

- These 3 cover all cases of interest
- Consider case 1 (specific example of third order, but the extension to $n^{\text {th }}$ follows easily)

$$
\frac{y}{u}=G(s)=\frac{1}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}
$$

can be rewritten as the differential equation

$$
\dddot{y}+a_{1} \ddot{y}+a_{2} \dot{y}+a_{3} y=u
$$

choose the output y and its derivatives as the state vector

$$
\mathbf{x}=\left[\begin{array}{l}
\ddot{y} \\
\dot{y} \\
y
\end{array}\right]
$$

then the state equations are

$$
\begin{aligned}
& \dot{\mathbf{x}}=\left[\begin{array}{l}
\dddot{y} \\
\ddot{y} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\ddot{y} \\
\dot{y} \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\ddot{y} \\
\dot{y} \\
y
\end{array}\right]+[0] u
\end{aligned}
$$

- This is typically called the controller form for reasons that will become obvious later on.
- There are four classic (called canonical) forms - observer, controller, controllability, and observability. They are all useful in their own way.
- Consider case 2

$$
\frac{y}{u}=G(s)=\frac{b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}=\frac{N(s)}{D(s)}
$$

- Let

$$
\frac{y}{u}=\frac{y}{v} \cdot \frac{v}{u}
$$

where $y / v=N(s)$ and $v / u=1 / D(s)$

- Then representation of $v / u=1 / D(s)$ is the same as case 1

$$
\dddot{v}+a_{1} \ddot{v}+a_{2} \dot{v}+a_{3} v=u
$$

use the state vector

$$
\mathbf{x}=\left[\begin{array}{c}
\ddot{v} \\
\dot{v} \\
v
\end{array}\right]
$$

to get

$$
\dot{\mathbf{x}}=A_{2} \mathbf{x}+B_{2} u
$$

where

$$
A_{2}=\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text { and } B_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Then consider $y / v=N(s)$, which implies that

$$
\begin{aligned}
y & =b_{1} \ddot{v}+b_{2} \dot{v}+b_{3} v \\
& =\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]\left[\begin{array}{c}
\ddot{v} \\
\dot{v} \\
v
\end{array}\right] \\
& =C_{2} \mathbf{x}+[0] u
\end{aligned}
$$

- Consider case $\mathbf{3}$ with

$$
\begin{aligned}
\frac{y}{u}=G(s) & =\frac{b_{0} s^{3}+b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}} \\
& =\frac{\beta_{1} s^{2}+\beta_{2} s+\beta_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}+D \\
& =G_{1}(s)+D
\end{aligned}
$$

where

$$
\begin{aligned}
& D\left(s^{3}+a_{1} s^{2}+a_{2} s+a_{3}\right) \\
& +\left(\begin{array}{r}
1 \\
\left.s^{2}+\beta_{2} s+\beta_{3}\right)
\end{array}\right. \\
& =b_{0} s^{3}+b_{1} s^{2}+b_{2} s+b_{3}
\end{aligned}
$$

so that, given the b_{i}, we can easily find the β_{i}

$$
\begin{aligned}
& D=b_{0} \\
& \beta_{1}=b_{1}-D a_{1}
\end{aligned}
$$

- Given the β_{i}, can find $G_{1}(s)$
- Can make state-space model for $G_{1}(s)$ as in case 2
- Then we just add the "feed-through" term $D u$ to the output equation from the model for $G_{1}(s)$
- Will see that there is a lot of freedom in making a state-space model because we are free to pick the x as we want

Modal Form

- One particular useful canonical form is called the Modal Form
- It is a diagonal representation of the state-space model.
- Assume for now that the transfer function has distinct real poles p_{i} (easily extends to case with complex poles, see 7-??)

$$
\begin{aligned}
G(s) & =\frac{N(s)}{D(s)}=\frac{N(s)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \cdots\left(s-p_{n}\right)} \\
& =\frac{r_{1}}{s-p_{1}}+\frac{r_{2}}{s-p_{2}}+\cdots+\frac{r_{n}}{s-p_{n}}
\end{aligned}
$$

- Now define collection of first order systems, each with state x_{i}

$$
\begin{aligned}
\frac{X_{1}}{U(s)} & =\frac{r_{1}}{s-p_{1}} \Rightarrow \dot{x}_{1}=p_{1} x_{1}+r_{1} u \\
\frac{X_{2}}{U(s)} & =\frac{r_{2}}{s-p_{2}} \Rightarrow \dot{x}_{2}=p_{2} x_{2}+r_{2} u \\
\frac{\vdots}{U(s)} & =\frac{r_{n}}{s-p_{n}} \Rightarrow \dot{x}_{n}=p_{n} x_{n}+r_{n} u
\end{aligned}
$$

- Which can be written as

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B u(t) \\
y(t) & =C \mathbf{x}(t)+D u(t)
\end{aligned}
$$

with

$$
A=\left[\begin{array}{ccc}
p_{1} & & \\
& \ddots & \\
& & p_{n}
\end{array}\right] \quad B=\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right] \quad C=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]^{T}
$$

- Good representation to use for numerical robustness reasons.
- Avoids some of the large coefficients in the other 4 canonical forms.

State-Space Models to TF's

- Given the Linear Time-Invariant (LTI) state dynamics

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B u(t) \\
y(t) & =C \mathbf{x}(t)+D u(t)
\end{aligned}
$$

what is the corresponding transfer function?

- Start by taking the Laplace Transform of these equations

$$
\begin{aligned}
\mathcal{L}\{\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B u(t)\} \\
s X(s)-\mathbf{x}\left(0^{-}\right) & =A X(s)+B U(s) \\
\mathcal{L}\{y(t) & =C \mathbf{x}(t)+D u(t)\} \\
Y(s) & =C X(s)+D U(s)
\end{aligned}
$$

which gives

$$
\begin{aligned}
(s I-A) X(s) & =B U(s)+\mathbf{x}\left(0^{-}\right) \\
\Rightarrow X(s) & =(s I-A)^{-1} B U(s)+(s I-A)^{-1} \mathbf{x}\left(0^{-}\right)
\end{aligned}
$$

and

$$
Y(s)=\left[C(s I-A)^{-1} B+D\right] U(s)+C(s I-A)^{-1} \mathbf{x}\left(0^{-}\right)
$$

- By definition $G(s)=C(s I-A)^{-1} B+D$ is called the Transfer Function of the system.
- And $C(s I-A)^{-1} \mathbf{x}\left(0^{-}\right)$is the initial condition response.
- It is part of the response, but not part of the transfer function.

SS to TF

- In going from the state space model

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B u(t) \\
y(t) & =C \mathbf{x}(t)+D u(t)
\end{aligned}
$$

to the transfer function $G(s)=C(s I-A)^{-1} B+D$ need to form inverse of matrix $(s I-A)$

- A symbolic inverse - not very easy.
- For simple cases, we can use the following:

$$
\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right]^{-1}=\frac{1}{a_{1} a_{4}-a_{2} a_{3}}\left[\begin{array}{cc}
a_{4} & -a_{2} \\
-a_{3} & a_{1}
\end{array}\right]
$$

For larger problems, we can also use Cramer's Rule

- Turns out that an equivalent method is to form: ${ }^{1}$

$$
G(s)=C(s I-A)^{-1} B+D=\frac{\operatorname{det}\left[\begin{array}{cc}
s I-A & -B \\
C & D
\end{array}\right]}{\operatorname{det}(s I-A)}
$$

- Reason for this will become more apparent later (see 8-??) when we talk about how to compute the "zeros" of a state-space model (which are the roots of the numerator)
- Key point: System characteristic equation given by

$$
\phi(s)=\operatorname{det}(s I-A)=0
$$

- It is the roots of $\phi(s)=0$ that determine the poles of the system. Will show that these determine the time response of the system.
- Example from Case 2, page 6-4

$$
A=\left[\begin{array}{ccc}
-a_{1} & -a_{2} & -a_{3} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], C=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]^{T}
$$

then

$$
\begin{aligned}
G(s) & =\frac{1}{\operatorname{det}(s I-A)} \cdot \operatorname{det}\left[\begin{array}{ccc|c}
s+a_{1} & a_{2} & a_{3} & -1 \\
-1 & s & 0 & 0 \\
0 & -1 & s & 0 \\
\hline b_{1} & b_{2} & b_{3} & 0
\end{array}\right] \\
& =\frac{b_{3}+b_{2} s+b_{1} s^{2}}{\operatorname{det}(s I-A)}
\end{aligned}
$$

and $\operatorname{det}(s I-A)=s^{3}+a_{1} s^{2}+a_{2} s+a_{3}$

- Which is obviously the same as before.

State-Space Transformations

- State space representations are not unique because we have a lot of freedom in choosing the state vector.
- Selection of the state is quite arbitrary, and not that important.
- In fact, given one model, we can transform it to another model that is equivalent in terms of its input-output properties.
- To see this, define Model 1 of $G(s)$ as

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B \mathbf{u}(t) \\
\mathbf{y}(t) & =C \mathbf{x}(t)+D \mathbf{u}(t)
\end{aligned}
$$

- Now introduce the new state vector \mathbf{z} related to the first state \mathbf{x} through the transformation $\mathbf{x}=T \mathbf{z}$
- T is an invertible (similarity) transform matrix

$$
\begin{aligned}
\dot{\mathbf{z}}=T^{-1} \dot{\mathbf{x}} & =T^{-1}(A \mathbf{x}+B \mathbf{u}) \\
& =T^{-1}(A T \mathbf{z}+B \mathbf{u}) \\
& =\left(T^{-1} A T\right) \mathbf{z}+T^{-1} B \mathbf{u}=\bar{A} \mathbf{z}+\bar{B} \mathbf{u}
\end{aligned}
$$

and

$$
\mathbf{y}=C \mathbf{x}+D \mathbf{u}=C T \mathbf{z}+D \mathbf{u}=\bar{C} \mathbf{z}+\bar{D} \mathbf{u}
$$

- So the new model is

$$
\begin{aligned}
\dot{\mathbf{z}} & =\bar{A} \mathbf{z}+\bar{B} \mathbf{u} \\
\mathbf{y} & =\bar{C} \mathbf{z}+\bar{D} \mathbf{u}
\end{aligned}
$$

- Are these going to give the same transfer function? They must if these really are equivalent models.
- Consider the two transfer functions:

$$
\begin{aligned}
& G_{1}(s)=C(s I-A)^{-1} B+D \\
& G_{2}(s)=\bar{C}(s I-\bar{A})^{-1} \bar{B}+\bar{D}
\end{aligned}
$$

Does $G_{1}(s) \equiv G_{2}(s)$?

$$
\begin{aligned}
G_{1}(s) & =C(s I-A)^{-1} B+D \\
& =C\left(T T^{-1}\right)(s I-A)^{-1}\left(T T^{-1}\right) B+D \\
& =(C T)\left[T^{-1}(s I-A)^{-1} T\right]\left(T^{-1} B\right)+\bar{D} \\
& =(\bar{C})\left[T^{-1}(s I-A) T\right]^{-1}(\bar{B})+\bar{D} \\
& =\bar{C}(s I-\bar{A})^{-1} \bar{B}+\bar{D}=G_{2}(s)
\end{aligned}
$$

- So the transfer function is not changed by putting the state-space model through a similarity transformation.
- Note that in the transfer function

$$
G(s)=\frac{b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}}
$$

we have 6 parameters to choose

- But in the related state-space model, we have $A-3 \times 3, B-3 \times 1$, $C-1 \times 3$ for a total of 15 parameters.
- Is there a contradiction here because we have more degrees of freedom in the state-space model?
- No. In choosing a representation of the model, we are effectively choosing a T, which is also 3×3, and thus has the remaining 9 degrees of freedom in the state-space model.

MIT OpenCourseWare
http://ocw.mit.edu

16.30 / 16.31 Feedback Control Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

