Topic \#5

16.30/31 Feedback Control Systems

State-Space Systems

- What are state-space models?
- Why should we use them?
- How are they related to the transfer functions used in classical control design and how do we develop a statespace model?
- What are the basic properties of a state-space model, and how do we analyze these?

SS Introduction

- State space model: a representation of the dynamics of an $N^{\text {th }}$ order system as a first order differential equation in an N-vector, which is called the state.
- Convert the $N^{\text {th }}$ order differential equation that governs the dynamics into N first-order differential equations
- Classic example: second order mass-spring system

$$
m \ddot{p}+c \dot{p}+k p=F
$$

- Let $x_{1}=p$, then $x_{2}=\dot{p}=\dot{x}_{1}$, and

$$
\begin{gathered}
\dot{x}_{2}=\ddot{p}=(F-c \dot{p}-k p) / m \\
=\left(F-c x_{2}-k x_{1}\right) / m \\
\Rightarrow\left[\begin{array}{c}
\dot{p} \\
\ddot{p}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-k / m & -c / m
\end{array}\right]\left[\begin{array}{c}
p \\
\dot{p}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / m
\end{array}\right] u
\end{gathered}
$$

- Let $u=F$ and introduce the state

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
p \\
\dot{p}
\end{array}\right] \Rightarrow \dot{\mathbf{x}}=A \mathbf{x}+B u
$$

- If the measured output of the system is the position, then we have that

$$
y=p=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{c}
p \\
\dot{p}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=C \mathbf{x}
$$

- Most general continuous-time linear dynamical system has form

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A(t) \mathbf{x}(t)+B(t) \mathbf{u}(t) \\
\mathbf{y}(t) & =C(t) \mathbf{x}(t)+D(t) \mathbf{u}(t)
\end{aligned}
$$

where:

- $t \in \mathbb{R}$ denotes time
- $\mathbf{x}(t) \in \mathbb{R}^{n}$ is the state (vector)
- $\mathbf{u}(t) \in \mathbb{R}^{m}$ is the input or control
- $\mathbf{y}(t) \in \mathbb{R}^{p}$ is the output
- $A(t) \in \mathbb{R}^{n \times n}$ is the dynamics matrix
- $B(t) \in \mathbb{R}^{n \times m}$ is the input matrix
- $C(t) \in \mathbb{R}^{p \times n}$ is the output or sensor matrix
- $D(t) \in \mathbb{R}^{p \times m}$ is the feedthrough matrix
- Note that the plant dynamics can be time-varying.
- Also note that this is a multi-input / multi-output (MIMO) system.
- We will typically deal with the time-invariant case
\Rightarrow Linear Time-Invariant (LTI) state dynamics

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A \mathbf{x}(t)+B \mathbf{u}(t) \\
\mathbf{y}(t) & =C \mathbf{x}(t)+D \mathbf{u}(t)
\end{aligned}
$$

so that now A, B, C, D are constant and do not depend on t.

Basic Definitions

- Linearity - What is a linear dynamical system? A system G is linear with respect to its inputs and output

$$
\mathbf{u}(t) \rightarrow G(s) \rightarrow \mathbf{y}(t)
$$

iff superposition holds:

$$
G\left(\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}\right)=\alpha_{1} G \mathbf{u}_{1}+\alpha_{2} G \mathbf{u}_{2}
$$

So if \mathbf{y}_{1} is the response of G to $\mathbf{u}_{1}\left(\mathbf{y}_{1}=G \mathbf{u}_{1}\right)$, and \mathbf{y}_{2} is the response of G to $\mathbf{u}_{2}\left(\mathbf{y}_{2}=G \mathbf{u}_{2}\right)$, then the response to $\alpha_{1} \mathbf{u}_{1}+\alpha_{2} \mathbf{u}_{2}$ is $\alpha_{1} \mathbf{y}_{1}+\alpha_{2} \mathbf{y}_{2}$

- A system is said to be time-invariant if the relationship between the input and output is independent of time. So if the response to $\mathbf{u}(t)$ is $\mathbf{y}(t)$, then the response to $\mathbf{u}\left(t-t_{0}\right)$ is $\mathbf{y}\left(t-t_{0}\right)$
- Example: the system

$$
\begin{aligned}
\dot{x}(t) & =3 x(t)+u(t) \\
y(t) & =x(t)
\end{aligned}
$$

is LTI, but

$$
\begin{aligned}
\dot{x}(t) & =3 t x(t)+u(t) \\
y(t) & =x(t)
\end{aligned}
$$

is not.

- A matrix of second system is a function of absolute time, so response to $u(t)$ will differ from response to $u(t-1)$.
- $\mathbf{x}(t)$ is called the state of the system at t because:
- Future output depends only on current state and future input
- Future output depends on past input only through current state
- State summarizes effect of past inputs on future output - like the memory of the system
- Example: Rechargeable flashlight - the state is the current state of charge of the battery. If you know that state, then you do not need to know how that level of charge was achieved (assuming a perfect battery) to predict the future performance of the flashlight.
- But to consider all nonlinear effects, you might also need to know how many cycles the battery has gone through
- Key point is that you might expect a given linear model to accurately model the charge depletion behavior for a given number of cycles, but that model would typically change with the number cycles

Creating State-Space Models

- Most easily created from $N^{\text {th }}$ order differential equations that describe the dynamics
- This was the case done before.
- Only issue is which set of states to use - there are many choices.
- Can be developed from transfer function model as well.
- Much more on this later
- Problem is that we have restricted ourselves here to linear state space models, and almost all systems are nonlinear in real-life.
- Can develop linear models from nonlinear system dynamics

Equilibrium Points

- Often have a nonlinear set of dynamics given by

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})
$$

where \mathbf{x} is once gain the state vector, \mathbf{u} is the vector of inputs, and $\mathbf{f}(\cdot, \cdot)$ is a nonlinear vector function that describes the dynamics

- First step is to define the point about which the linearization will be performed.
- Typically about equilibrium points - a point for which if the system starts there it will remain there for all future time.
- Characterized by setting the state derivative to zero:

$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})=0
$$

- Result is an algebraic set of equations that must be solved for both \mathbf{x}_{e} and \mathbf{u}_{e}
- Note that $\dot{\mathbf{x}}_{e}=0$ and $\dot{\mathbf{u}}_{e}=0$ by definition
- Typically think of these nominal conditions $\mathbf{x}_{e}, \mathbf{u}_{e}$ as "set points" or "operating points" for the nonlinear system.
- Example - pendulum dynamics: $\ddot{\theta}+r \dot{\theta}+\frac{g}{l} \sin \theta=0$ can be written in state space form as

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-r x_{2}-\frac{g}{l} \sin x_{1}
\end{array}\right]
$$

- Setting $\mathbf{f}(\mathbf{x}, \mathbf{u})=0$ yields $x_{2}=0$ and $x_{2}=-\frac{g}{r l} \sin x_{1}$, which implies that $x_{1}=\theta=\{0, \pi\}$

Linearization

- Typically assume that the system is operating about some nominal state solution \mathbf{x}_{e} (possibly requires a nominal input \mathbf{u}_{e})
- Then write the actual state as $\mathbf{x}(t)=\mathbf{x}_{e}+\delta \mathbf{x}(t)$ and the actual inputs as $\mathbf{u}(t)=\mathbf{u}_{e}+\delta \mathbf{u}(t)$
- The " δ " is included to denote the fact that we expect the variations about the nominal to be "small"
- Can then develop the linearized equations by using the Taylor series expansion of $\mathbf{f}(\cdot, \cdot)$ about \mathbf{x}_{e} and \mathbf{u}_{e}.
- Recall the vector equation $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})$, each equation of which

$$
\dot{x}_{i}=f_{i}(\mathbf{x}, \mathbf{u})
$$

can be expanded as

$$
\begin{aligned}
\frac{d}{d t}\left(x_{e i}+\delta x_{i}\right) & =f_{i}\left(\mathbf{x}_{e}+\delta \mathbf{x}, \mathbf{u}_{e}+\delta \mathbf{u}\right) \\
& \approx f_{i}\left(\mathbf{x}_{e}, \mathbf{u}_{e}\right)+\left.\frac{\partial f_{i}}{\partial \mathbf{x}}\right|_{0} \delta \mathbf{x}+\left.\frac{\partial f_{i}}{\partial \mathbf{u}}\right|_{0} \delta \mathbf{u}
\end{aligned}
$$

where

$$
\frac{\partial f_{i}}{\partial \mathbf{x}}=\left[\begin{array}{lll}
\frac{\partial f_{i}}{\partial x_{1}} & \cdots & \frac{\partial f_{i}}{\partial x_{n}}
\end{array}\right]
$$

and $\left.\cdot\right|_{0}$ means that we should evaluate the function at the nominal values of \mathbf{x}_{e} and \mathbf{u}_{e}.

- The meaning of "small" deviations now clear - the variations in $\delta \mathbf{x}$ and $\delta \mathbf{u}$ must be small enough that we can ignore the higher order terms in the Taylor expansion of $\mathbf{f}(\mathbf{x}, \mathbf{u})$.
- Since $\frac{d}{d t} x_{e i}=f_{i}\left(\mathbf{x}_{e}, \mathbf{u}_{e}\right)$, we thus have that

$$
\left.\frac{d}{d t}\left(\delta x_{i}\right) \approx \frac{\partial f_{i}}{\partial \mathbf{x}}\right|_{0} \delta \mathbf{x}+\left.\frac{\partial f_{i}}{\partial \mathbf{u}}\right|_{0} \delta \mathbf{u}
$$

- Combining for all n state equations, gives (note that we also set " \approx " \rightarrow " $=$ ") that

$$
\begin{aligned}
\frac{d}{d t} \delta \mathbf{x} & =\left[\begin{array}{c}
\left.\frac{\partial f_{1}}{\partial \mathbf{x}}\right|_{0} \\
\left.\frac{\partial f_{2}}{\partial \mathbf{x}}\right|_{0} \\
\vdots \\
\left.\frac{\partial f_{n}}{\partial \mathbf{x}}\right|_{0}
\end{array}\right] \delta \mathbf{x}+\left[\begin{array}{c}
\left.\frac{\partial f_{1}}{\partial \mathbf{u}}\right|_{0} \\
\left.\frac{\partial f_{2}}{\partial \mathbf{u}}\right|_{0} \\
\vdots \\
\left.\frac{\partial f_{n}}{\partial \mathbf{u}}\right|_{0}
\end{array}\right] \delta \mathbf{u} \\
& =A(t) \delta \mathbf{x}+B(t) \delta \mathbf{u}
\end{aligned}
$$

where

$$
A(t) \equiv\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
& & \vdots & \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]_{0} \text { and } B(t) \equiv\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial u_{1}} & \frac{\partial f_{1}}{\partial u_{2}} & \cdots & \frac{\partial f_{1}}{\partial u_{m}} \\
\frac{\partial f_{2}}{\partial u_{1}} & \frac{\partial f_{2}}{\partial u_{2}} & \cdots & \frac{\partial f_{2}}{\partial u_{m}} \\
& & \vdots & \\
\frac{\partial f_{n}}{\partial u_{1}} & \frac{\partial f_{n}}{\partial u_{2}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}}
\end{array}\right]_{0}
$$

- Similarly, if the nonlinear measurement equation is $\mathbf{y}=\mathbf{g}(\mathbf{x}, \mathbf{u})$ and $\mathbf{y}(t)=\mathbf{y}_{e}+\delta \mathbf{y}$, then

$$
\begin{aligned}
\delta \mathbf{y} & =\left[\begin{array}{c}
\left.\frac{\partial g_{1}}{\partial \mathbf{x}}\right|_{0} \\
\vdots \\
\left.\frac{\partial g_{p}}{\partial \mathbf{x}}\right|_{0}
\end{array}\right] \delta \mathbf{x}+\left[\begin{array}{c}
\left.\frac{\partial g_{1}}{\partial \mathbf{u}}\right|_{0} \\
\vdots \\
\left.\frac{\partial g_{p}}{\partial \mathbf{u}}\right|_{0}
\end{array}\right] \delta \mathbf{u} \\
& =C(t) \delta \mathbf{x}+D(t) \delta \mathbf{u}
\end{aligned}
$$

- Typically drop the " δ " as they are rather cumbersome, and (abusing notation) we write the state equations as:

$$
\begin{aligned}
\dot{\mathbf{x}}(t) & =A(t) \mathbf{x}(t)+B(t) \mathbf{u}(t) \\
\mathbf{y}(t) & =C(t) \mathbf{x}(t)+D(t) \mathbf{u}(t)
\end{aligned}
$$

which is of the same form as the previous linear models

- If the system is operating around just one set point then the partial fractions in the expressions for $A-D$ are all constant \rightarrow LTI linearized model.

Stability of LTI Systems

- Consider a solution $\mathbf{x}_{s}(t)$ to a differential equation for a given initial condition $\mathbf{x}_{s}\left(t_{0}\right)$.
- Solution is stable if other solutions $\mathbf{x}_{b}\left(t_{0}\right)$ that start near $\mathbf{x}_{s}\left(t_{0}\right)$ stay close to $\mathbf{x}_{s}(t) \forall t \Rightarrow$ stable in sense of Lyapunov (SSL).
- If other solutions are SSL , but the $\mathbf{x}_{b}(t)$ do not converge to $\mathbf{x}_{s}(t)$ \Rightarrow solution is neutrally stable.
- If other solutions are SSL and $\mathbf{x}_{b}(t) \rightarrow \mathbf{x}(t)$ as $t \rightarrow \infty \Rightarrow$ solution is asymptotically stable.
- A solution $\mathbf{x}_{s}(t)$ is unstable if it is not stable.
- Note that a linear (autonomous) system $\dot{\mathbf{x}}=A \mathbf{x}$ has an equilibrium point at $\mathbf{x}_{e}=0$
- This equilibrium point is stable if and only if all of the eigenvalues of A satisfy $\mathbb{R} \lambda_{i}(A) \leq 0$ and every eigenvalue with $\mathbb{R} \lambda_{i}(A)=0$ has a Jordan block of order one. ${ }^{1}$
- Thus the stability test for a linear system is the familiar one of determining if $\mathbb{R} \lambda_{i}(A) \leq 0$
- Somewhat surprisingly perhaps, we can also infer stability of the original nonlinear from the analysis of the linearized system model

[^0]- Lyapunov's indirect method ${ }^{2}$ Let $\mathbf{x}_{e}=0$ be an equilibrium point for the nonlinear autonomous system

$$
\dot{\mathbf{x}}(t)=\mathbf{f}(\mathbf{x}(t))
$$

where \mathbf{f} is continuously differentiable in a neighborhood of \mathbf{x}_{e}. Assume

$$
A=\left.\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\mathbf{x}_{e}}
$$

Then:

- The origin is an asymptotically stable equilibrium point for the nonlinear system if $\mathbb{R} \lambda_{i}(A)<0 \forall i$
- The origin is unstable if $\mathbb{R} \lambda_{i}(A)>0$ for any i
- Note that this doesn't say anything about the stability of the nonlinear system if the linear system is neutrally stable.
- A very powerful result that is the basis of all linear control theory.

Linearization Example

- Example: simple spring. With a mass at the end of a linear spring (rate k) we have the dynamics

$$
m \ddot{x}=-k x
$$

but with a "leaf spring" as is used on car suspensions, we have a nonlinear spring - the more it deflects, the stiffer it gets. Good model now is

$$
m \ddot{x}=-k_{1} x-k_{2} x^{3}
$$

which is a "cubic spring".

Fig. 1: Leaf spring from http://en.wikipedia.org/wiki/Image:Leafs1.jpg

- Restoring force depends on deflection x in a nonlinear way.

Fig. 2: Response to linear $k=1$ and nonlinear $\left(k_{1}=k, k_{2}=-2\right)$ springs (code at the end)

- Consider the nonlinear spring with (set $m=1$)

$$
\ddot{y}=-k_{1} y-k_{2} y^{3}
$$

gives us the nonlinear model ($x_{1}=y$ and $x_{2}=\dot{y}$)

$$
\frac{d}{d t}\left[\begin{array}{l}
y \\
\dot{y}
\end{array}\right]=\left[\begin{array}{c}
\dot{y} \\
-k_{1} y-k_{2} y^{3}
\end{array}\right] \Rightarrow \dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})
$$

- Find the equilibrium points and then make a state space model
- For the equilibrium points, we must solve

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
\dot{y} \\
-k_{1} y-k_{2} y^{3}
\end{array}\right]=0
$$

which gives

$$
\dot{y}_{e}=0 \quad \text { and } \quad k_{1} y_{e}+k_{2}\left(y_{e}\right)^{3}=0
$$

- Second condition corresponds to $y_{e}=0$ or $y_{e}= \pm \sqrt{-k_{1} / k_{2}}$, which is only real if k_{1} and k_{2} are opposite signs.
- For the state space model,

$$
\begin{aligned}
A=\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \left.\frac{\partial f_{2}}{\partial x_{2}}\right]_{0}
\end{array}\right. & =\left[\begin{array}{cc}
0 & 1 \\
-k_{1}-3 k_{2}(y)^{2} & 0
\end{array}\right]_{0} \\
& =\left[\begin{array}{cc}
0 & 1 \\
-k_{1}-3 k_{2}\left(y_{e}\right)^{2} & 0
\end{array}\right]
\end{aligned}
$$

and the linearized model is $\delta \mathbf{x}=A \delta \mathbf{x}$

- For the equilibrium point $y_{e}=0, \dot{y}_{e}=0$

$$
A_{0}=\left[\begin{array}{cc}
0 & 1 \\
-k_{1} & 0
\end{array}\right]
$$

which are the standard dynamics of a system with just a linear spring of stiffness k_{1}

- Stable motion about $y=0$ if $k_{1}>0$
- Assume that $k_{1}=-1, k_{2}=1 / 2$, then we should get an equilibrium point at $\dot{y}=0, y= \pm \sqrt{2}$, and since $k_{1}+k_{2}\left(y_{e}\right)^{2}=0$ then

$$
A_{1}=\left[\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right]
$$

which are the dynamics of a stable oscillator about the equilibrium point

Fig. 3: Nonlinear response ($k_{1}=-1, k_{2}=0.5$). The figure on the right shows the oscillation about the equilibrium point.

Code: Nonlinear System Sim

```
function test=nlplant(ft);
global k1 k2
x0 = [-1 2]/10;
k1=1;k2=0;
[T,x]=ode23('plant', [0 20], x0); % linear
k2=-2;
[T1,x1]=ode23('plant', [0 20], x0); %nonlinear
figure(1);clf;
subplot(211)
plot(T,x(:,1),T1,x1(:,1),'-');
legend('Linear','Nonlinear')
ylabel('X','FontSize',ft)
xlabel('Time','FontSize',ft)
subplot(212)
plot(T,x(:,2),T1,x1(:,2),'-_');
legend('Linear','Nonlinear')
ylabel('V','FontSize',ft)
xlabel('Time','FontSize',ft)
text(4,0.3,['k_2=',num2str(k2)],'FontSize',ft)
return
% use the following to cll the function above
close all
set(0, 'DefaultAxesFontSize', 12, 'DefaultAxesFontWeight','demi')
set(0, 'DefaultTextFontSize', 12, 'DefaultTextFontWeight','demi')
set(0,'DefaultAxesFontName','arial')
set(0,'DefaultAxesFontSize',12)
set(0,'DefaultTextFontName','arial')
set(gcf,'DefaultLineLineWidth',2);
set(gcf,'DefaultlineMarkerSize',10)
global k1 k2
nlplant(14)
print -f1 -dpng -r300 nlplant.png
k1=-1;k2=0.5;
% call_plant.m
x0 = [sqrt(-k1/k2) .25];
[T,x]=ode23('plant', [0:.001:32], x0);
figure(1); subplot(211);plot(T,x(:,1));ylabel('y');xlabel('Time');grid
subplot(212);plot(T,x(:,2));ylabel('dy/dt');xlabel('Time');grid
figure(2);plot(x(:,1),x(:,2));grid
hold on;plot(x0(1),0,'rx','MarkerSize',20);hold off;
xlabel('y');ylabel('dy/dt')
axis([1.2 1.7 -. 25 .25]);axis('square')
print -f1 -dpng -r300 nlplant2.png
print -f2 -dpng -r300 nlplant3.png
```

```
function [xdot] = plant(t,x);
% plant.m
global k1 k2
xdot(1) = x(2);
xdot(2) = -k1*x(1)-k2*(x(1))^3;
xdot = xdot';
```


Linearization Example: Aircraft Dynamics

- The basic dynamics are:

$$
\begin{aligned}
& \vec{F}=m \dot{\vec{v}}_{c}^{I} \text { and } \vec{T}=\dot{\vec{H}}^{I} \\
& \Rightarrow \frac{1}{m} \vec{F}=\dot{\vec{v}}_{c}^{B}+{ }^{B I} \vec{\omega} \times \vec{v}_{c} \quad \text { Transport Thm. } \\
& \Rightarrow \vec{T}=\dot{\vec{H}}^{B}+{ }^{B I} \vec{\omega} \times \vec{H}
\end{aligned}
$$

- Basic assumptions are:

1. Earth is an inertial reference frame
2. A / C is a rigid body

3. Body frame \mathbf{B} fixed to the aircraft $(\vec{i}, \vec{j}, \vec{k}) \quad$ Image by MIT OpenCourseWare.

- Instantaneous mapping of \vec{v}_{c} and ${ }^{B I} \vec{\omega}$ into the body frame:

$$
\begin{array}{r}
{ }^{B I} \vec{\omega}=P \vec{i}+Q \vec{j}+R \vec{k}
\end{array} \quad \vec{v}_{c}=U \vec{i}+V \vec{j}+W \vec{k},\left[\begin{array}{c}
P \\
Q \\
R
\end{array}\right] \quad \Rightarrow\left(v_{c}\right)_{B}=\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]
$$

- If x and z axes in plane of symmetry, can show that $I_{x y}=I_{y z}=0$, but value of $I_{x z}$ depends on specific body frame selected.
- Instantaneous mapping of angular momentum

$$
\vec{H}=H_{x} \vec{i}+H_{y} \vec{j}+H_{z} \vec{k}
$$

into the body frame given by

$$
H_{B}=\left[\begin{array}{c}
H_{x} \\
H_{y} \\
H_{z}
\end{array}\right]=\left[\begin{array}{ccc}
I_{x x} & 0 & I_{x z} \\
0 & I_{y y} & 0 \\
I_{x z} & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{l}
P \\
Q \\
R
\end{array}\right]
$$

- The overall equations of motion are then:

$$
\begin{aligned}
\frac{1}{m} \vec{F} & =\dot{\vec{u}}_{c}^{B}+{ }^{B I} \vec{\omega} \times \vec{v}_{c} \\
\Rightarrow \frac{1}{m}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] & =\left[\begin{array}{c}
\dot{U} \\
\dot{V} \\
\dot{W}
\end{array}\right]+\left[\begin{array}{rrr}
0 & -R & Q \\
R & 0 & -P \\
-Q & P & 0
\end{array}\right]\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right] \\
& =\left[\begin{array}{c}
\dot{U}+Q W-R V \\
\dot{V}+R U-P W \\
\dot{W}+P V-Q U
\end{array}\right] \\
\vec{T} & =\dot{\vec{H}}^{B}+{ }^{B I} \vec{\omega} \times \vec{H}
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right]=\left[\begin{array}{c}
I_{x x} \dot{P}+I_{x z} \dot{R} \\
I_{y y} \dot{Q} \\
I_{z z} \dot{R}+I_{x z} \dot{P}
\end{array}\right]+\left[\begin{array}{rrr}
0 & -R & Q \\
R & 0 & -P \\
-Q & P & 0
\end{array}\right]\left[\begin{array}{rrr}
I_{x x} & 0 & I_{x z} \\
0 & I_{y y} & 0 \\
I_{x z} & 0 & I_{z z}
\end{array}\right]\left[\begin{array}{c}
P \\
Q \\
R
\end{array}\right]
$$

$$
=\left[\begin{array}{cl}
I_{x x} \dot{P}+I_{x z} \dot{R} & +Q R\left(I_{z z}-I_{y y}\right)+P Q I_{x z} \\
I_{y y} \dot{Q} & +P R\left(I_{x x}-I_{z z}\right)+\left(R^{2}-P^{2}\right) I_{x z} \\
I_{z z} \dot{R}+I_{x z} \dot{P} & +P Q\left(I_{y y}-I_{x x}\right)-Q R I_{x z}
\end{array}\right]
$$

- Equations are very nonlinear and complicated, and we have not even said where \vec{F} and \vec{T} come from \Rightarrow need to linearize to develop analytic results
- Assume that the aircraft is flying in an equilibrium condition and we will linearize the equations about this nominal flight condition.

Linearization

- Can linearize about various steady state conditions of flight.
- For steady state flight conditions must have

$$
\vec{F}=\vec{F}_{\text {aero }}+\vec{F}_{\text {gravity }}+\vec{F}_{\text {thrust }}=0 \text { and } \vec{T}=0
$$

* So for equilibrium condition, forces balance on the aircraft

$$
L=W \text { and } T=D
$$

- Also assume that $\dot{P}=\dot{Q}=\dot{R}=\dot{U}=\dot{V}=\dot{W}=0$
- Impose additional constraints that depend on flight condition:
* Steady wings-level flight $\rightarrow \Phi=\dot{\Phi}=\dot{\Theta}=\dot{\Psi}=0$
- Define the trim angular rates and velocities

$$
{ }^{B I} \omega_{B}^{o}=\left[\begin{array}{c}
P \\
Q \\
R
\end{array}\right] \quad\left(v_{c}\right)_{B}^{o}=\left[\begin{array}{c}
U_{o} \\
0 \\
0
\end{array}\right]
$$

which are associated with the flight condition. In fact, these define the type of equilibrium motion that we linearize about. Note:

- $W_{0}=0$ since we are using the stability axes, and
- $V_{0}=0$ because we are assuming symmetric flight
- Proceed with linearization of the dynamics for various flight conditions

Nominal	Perturbed	\Rightarrow	Perturbed
Velocity	Velocity	\Rightarrow	Acceleration

Velocities	U_{0},	$U=U_{0}+u$	\Rightarrow	$\dot{U}=\dot{u}$
	$W_{0}=0$,	$W=w$	\Rightarrow	$\dot{W}=\dot{w}$
	$V_{0}=0$,	$V=v$	\Rightarrow	$\dot{V}=\dot{v}$

Angular	$P_{0}=0$,	$P=p$	\Rightarrow	$\dot{P}=\dot{p}$
Rates	$Q_{0}=0$,	$Q=q$	\Rightarrow	$\dot{Q}=\dot{q}$
	$R_{0}=0$,	$R=r$	\Rightarrow	$\dot{R}=\dot{r}$

Angles
Θ_{0}
$\Phi_{0}=0$
$\Psi_{0}=0$
$\Theta=\Theta_{0}+\theta \quad \Rightarrow$
$\dot{\Theta}=\dot{\theta}$
$\Phi=\phi \quad \Rightarrow$
$\dot{\Phi}=\dot{\phi}$
$\Psi=\psi \quad \Rightarrow$
$\dot{\Psi}=\dot{\psi}$

- Linearization for symmetric flight

$$
U=U_{0}+u, V_{0}=W_{0}=0, P_{0}=Q_{0}=R_{0}=0
$$

Note that the forces and moments are also perturbed.

$$
\begin{aligned}
& \frac{1}{m}\left[X_{0}+\Delta X\right]= \dot{U}+Q W-R V \approx \dot{u}+q w-r v \approx \dot{u} \\
& \frac{1}{m}\left[Y_{0}+\Delta Y\right]= \dot{V}+R U-P W \\
& \approx \dot{v}+r\left(U_{0}+u\right)-p w \approx \dot{v}+r U_{0} \\
& \frac{1}{m}\left[Z_{0}+\Delta Z\right]= \dot{W}+P V-Q U \approx \dot{w}+p v-q\left(U_{0}+u\right) \\
& \approx \dot{w}-q U_{0} \\
& \Rightarrow \frac{1}{m}\left[\begin{array}{c}
\Delta X \\
\Delta Y \\
\Delta Z
\end{array}\right]=\left[\begin{array}{c}
\dot{u} \\
\dot{v}+r U_{0} \\
\dot{w}-q U_{0}
\end{array}\right] \quad \begin{array}{l}
1 \\
2 \\
3
\end{array}
\end{aligned}
$$

- Attitude motion:

$$
\begin{aligned}
{\left[\begin{array}{c}
L \\
M \\
N
\end{array}\right] } & =\left[\begin{array}{cl}
I_{x x} \dot{P}+I_{x z} \dot{R} & +Q R\left(I_{z z}-I_{y y}\right)+P Q I_{x z} \\
I_{y y} \dot{Q} & +P R\left(I_{x x}-I_{z z}\right)+\left(R^{2}-P^{2}\right) I_{x z} \\
I_{z z} \dot{R}+I_{x z} \dot{P} & +P Q\left(I_{y y}-I_{x x}\right)-Q R I_{x z}
\end{array}\right] \\
\Rightarrow\left[\begin{array}{c}
\Delta L \\
\Delta M \\
\Delta N
\end{array}\right] & =\left[\begin{array}{c}
I_{x x} \dot{p}+I_{x z} \dot{r} \\
I_{y y} \dot{q} \\
I_{z z} \dot{r}+I_{x z} \dot{p}
\end{array}\right] \begin{array}{l}
4 \\
5 \\
6
\end{array}
\end{aligned}
$$

- To understand equations in detail, and the resulting impact on the vehicle dynamics, we must investigate terms $\Delta X \ldots \Delta N$.
- We must also address the left-hand side (\vec{F}, \vec{T})
- Net forces and moments must be zero in equilibrium condition.
- Aerodynamic and Gravity forces are a function of equilibrium condition AND the perturbations about this equilibrium.
- Predict the changes to the aerodynamic forces and moments using a first order expansion in the key flight parameters

$$
\begin{aligned}
\Delta X & =\frac{\partial X}{\partial U} \Delta U+\frac{\partial X}{\partial W} \Delta W+\frac{\partial X}{\partial \dot{W}} \Delta \dot{W}+\frac{\partial X}{\partial \Theta} \Delta \Theta+\ldots+\frac{\partial X^{g}}{\partial \Theta} \Delta \Theta+\Delta X^{c} \\
& =\frac{\partial X}{\partial U} u+\frac{\partial X}{\partial W} w+\frac{\partial X}{\partial \dot{W}} \dot{w}+\frac{\partial X}{\partial \Theta} \theta+\ldots+\frac{\partial X^{g}}{\partial \Theta} \theta+\Delta X^{c}
\end{aligned}
$$

- $\frac{\partial X}{\partial U}$ called stability derivative - evaluated at eq. condition.
- Clearly approximation since ignores lags in aerodynamics forces (assumes that forces only function of instantaneous values)

Stability Derivatives

- First proposed by Bryan (1911) - has proven to be a very effective way to analyze the aircraft flight mechanics - well supported by numerous flight test comparisons.
- The forces and torques acting on the aircraft are very complex nonlinear functions of the flight equilibrium condition and the perturbations from equilibrium.
- Linearized expansion can involve many terms $u, \dot{u}, \ddot{u}, \ldots, w, \dot{w}, \ddot{w}, \ldots$
- Typically only retain a few terms to capture the dominant effects.
- Dominant behavior most easily discussed in terms of the:
- Symm. variables: U, W, Q \& forces/torques: X, Z, and M
- Asymm. variables: $V, P, R \&$ forces/torques: Y, L, and N
- Observation - for truly symmetric flight Y, L, and N will be exactly zero for any value of U, W, Q
\Rightarrow Derivatives of asymmetric forces/torques with respect to the symmetric motion variables are zero.
- Further (convenient) assumptions:

1. Derivatives of symmetric forces/torques with respect to the asymmetric motion variables are small and can be neglected.
2. We can neglect derivatives with respect to the derivatives of the motion variables, but keep $\partial Z / \partial \dot{w}$ and $M_{\dot{w}} \equiv \partial M / \partial \dot{w}$ (aerodynamic lag involved in forming new pressure distribution on the wing in response to the perturbed angle of attack)
3. $\partial X / \partial q$ is negligibly small.

$\partial() / \partial()$	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{L}	\mathbf{M}	\mathbf{N}
\mathbf{u}	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$
\mathbf{v}	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet
\mathbf{w}	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$
\mathbf{p}	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet
\mathbf{q}	≈ 0	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$
\mathbf{r}	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet	$\mathbf{0}$	\bullet

- Note that we must also find the perturbation gravity and thrust forces and moments

$$
\left.\frac{\partial X^{g}}{\partial \Theta}\right|_{0}=-\left.m g \cos \Theta_{0} \quad \frac{\partial Z^{g}}{\partial \Theta}\right|_{0}=-m g \sin \Theta_{0}
$$

- Aerodynamic summary:

$$
\begin{array}{ll}
\mathbf{1 A} & \Delta X=\left(\frac{\partial X}{\partial U}\right)_{0} u+\left(\frac{\partial X}{\partial W}\right)_{0} w \Rightarrow \Delta X \sim u, \alpha_{x} \approx w / U_{0} \\
\text { 2A } & \Delta Y \sim \beta \approx v / U_{0}, p, r \\
\text { 3A } & \Delta Z \sim u, \alpha_{x} \approx w / U_{0}, \dot{\alpha}_{x} \approx \dot{w} / U_{0}, q \\
\text { 4A } & \Delta L \sim \beta \approx v / U_{0}, p, r \\
\text { 5A } & \Delta M \sim u, \alpha_{x} \approx w / U_{0}, \dot{\alpha}_{x} \approx \dot{w} / U_{0}, q \\
\text { 6A } & \Delta N \sim \beta \approx v / U_{0}, p, r
\end{array}
$$

- Result is that, with these force, torque approximations, equations 1, 3, 5 decouple from 2, 4, 6
- 1, 3, 5 are the longitudinal dynamics in u, w, and q

$$
\begin{aligned}
{\left[\begin{array}{c}
\Delta X \\
\Delta Z \\
\Delta M
\end{array}\right]=} & {\left[\begin{array}{c}
m \dot{u} \\
m\left(\dot{w}-q U_{0}\right) \\
I_{y y} \dot{q}
\end{array}\right] } \\
& \approx\left[\begin{array}{c}
\left(\frac{\partial X}{\partial U}\right)_{0} u+\left(\frac{\partial X}{\partial W}\right)_{0} w+\left(\frac{\partial X^{g}}{\partial \Theta}\right)_{0} \theta+\Delta X^{c} \\
\left(\frac{\partial Z}{\partial U}\right)_{0} u+\left(\frac{\partial Z}{\partial W}\right)_{0} w+\left(\frac{\partial Z}{\partial \dot{W}}\right)_{0} \dot{w}+\left(\frac{\partial Z}{\partial Q}\right)_{0} q+\left(\frac{\partial Z^{g}}{\partial \Theta}\right)_{0} \theta+\Delta Z^{c} \\
\left(\frac{\partial M}{\partial U}\right)_{0} u+\left(\frac{\partial M}{\partial W}\right)_{0} w+\left(\frac{\partial M}{\partial \dot{W}}\right)_{0} \dot{w}+\left(\frac{\partial M}{\partial Q}\right)_{0} q+\Delta M^{c}
\end{array}\right]
\end{aligned}
$$

- 2, 4, 6 are the lateral dynamics in v, p, and r

$$
\begin{aligned}
{\left[\begin{array}{c}
\Delta Y \\
\Delta L \\
\Delta N
\end{array}\right]=} & {\left[\begin{array}{c}
m\left(\dot{v}+r U_{0}\right) \\
I_{x x} \dot{p}+I_{x z} \dot{r} \\
I_{z z} \dot{r}+I_{x z} \dot{p}
\end{array}\right] } \\
& \approx\left[\begin{array}{l}
\left(\frac{\partial Y}{\partial V}\right)_{0} v+\left(\frac{\partial Y}{\partial P}\right)_{0} p+\left(\frac{\partial Y}{\partial R}\right)_{0} r++\Delta Y^{c} \\
\left(\frac{\partial L}{\partial V}\right)_{0} v+\left(\frac{\partial L}{\partial P}\right)_{0} p+\left(\frac{\partial L}{\partial R}\right)_{0} r+\Delta L^{c} \\
\left(\frac{\partial N}{\partial V}\right)_{0} v+\left(\frac{\partial N}{\partial P}\right)_{0} p+\left(\frac{\partial N}{\partial R}\right)_{0} r+\Delta N^{c}
\end{array}\right]
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

16.30 / 16.31 Feedback Control Systems

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ more on Jordan blocks on $6-? ?$, but this basically means that these eigenvalues are not repeated.

