appendix F

TABLE OF SAMPLED DESCRIBING FUNCTIONS

$$
\begin{aligned}
x(t) & =A \sin \left(\frac{1}{n} \omega_{s} t+\phi\right) \\
\omega_{s} & =\text { sampling frequency }
\end{aligned}
$$

Note: The relay with or without hysteresis (two-level switch) can be treated simply by the method of Sec. 9.1. This table gives sampled describing functions for the relay with dead zone and the linear, lead pulse-width modulator.

Figure F. 1 Sampled describing function for the relay with dead zone nonlinearity (cf. Sec. 9.2).
$N(A, \phi)=$ sampled describing function
$=$ amplitude and phase relation between the sinusoid $x(t)$ and the fundamental harmonic component of $y^{*}(t)$
$N^{*}(A, \phi)=z$-transform describing function

$$
=\left.\frac{z \text { transform of } y^{*}(t)}{z \text { transform of } x(t)}\right|_{z=\exp \left(j \omega_{s} T_{s} / n\right)}
$$

$N^{*}(A, \phi)=T_{s} N(A, \phi)$
This figure, in 7 parts, consists of plots of extreme values of $-1 / N(A, \phi)$ for $n=2,3, \ldots, 8$. Only the unbiased output modes are included as they are the only modes of interest in the case of an unbiased input $x(t)$ (see Sec. 9.2).

Figure F-1a $\quad T=2 T_{B}$

Figure $\boldsymbol{F}-\mathbf{1 b} \quad T=3 T_{s}$

Figure F-1c $\quad T=4 T$,

616 SAMPLED DESCRIBING FUNCTIONS

Figure F-1d $\quad T=5 T_{s}$

Figure F-Ie $\quad T=6 T_{s}$

618 SAMPLED DESCRIBING FUNCTIONS

Figure F-1f $T=7 T_{\text {s }}$

Figure $\operatorname{F-1g} \quad T=8 T_{s}$

Figure F. 2 Describing function for the linear, lead pulse-width modulator (cf. Sec. 9.5).

The operation of the PWM is defined by Eqs. (9.5-1,2), and is pictured in Fig. 9.5-1.
The describing function $N(A, \phi)$ is the usual amplitude and phase relation between the sinusoid $x(t)$ and the fundamental harmonic component of $y(t)$.

This figure, in 4 parts, consists of plots of $-1 / N(A, \phi)$ for $n=2,4,6,8$ and a range of values of both A and ϕ. The solid curves correspond to constant values of A, and various values of ϕ are indicated. At other locations within the envelope of these curves, $-1 / N(A, \phi)$ exists for other values of A and ϕ not shown.

The limiting values of these describing functions are

$$
\begin{aligned}
\lim _{A \rightarrow 0}\left(-\frac{D k}{T_{s}} \frac{1}{N}\right) & =\frac{1}{2 \sin \phi} / \phi-270^{\circ} & & n=2 \\
& =1 \angle-180^{\circ} & & n>2 \\
\lim _{A \rightarrow \infty}\left(-\frac{D k}{T_{s}} \frac{1}{N}\right) & =\frac{\pi}{4} \frac{k A}{T_{s}} \angle \phi-180^{\circ} & & \text { all } n
\end{aligned}
$$

where in each case ϕ may take any value in the range

$$
0<\phi<\frac{360}{n}
$$

Figure \boldsymbol{F}-2a $\quad T=2 T_{s}$

622 SAMPLED DESCRIBING FUNCTIONS

Figure $F-2 b \quad T=4 T_{s}$

Figure $F-2 c \quad T=6 T$,

624 SAMPLED DESCRIBING FUNCTIONS

Figure $\boldsymbol{F}-2 d \quad T=8 T_{s}$

