APPENDIX D TABLE OF TWO-SINUSOID-INPUT DESCRIBING FUNCTIONS (TSIDFs)

The TSIDF can be represented by either of the following integral expressions (cf. Sec. 5.1)

$$N_B(A,B) = \frac{1}{2\pi^2 B} \int_{-\pi}^{\pi} d\psi_2 \sin \psi_2 \int_{-\pi}^{\pi} d\psi_1 \, y(A \sin \psi_1 + B \sin \psi_2)$$

or

$$N_B(A,B) = \frac{j}{\pi B} \int_{-\infty}^{\infty} du J_0(Au) J_1(Bu) \int_{-\infty}^{\infty} dx y(x) e^{-jux} dx$$

where J_0 and J_1 are the Bessel functions of orders 0 and 1, respectively. Use of this table is facilitated by application of the relationship

$$N_{\boldsymbol{A}}(\boldsymbol{A},\boldsymbol{B}) = N_{\boldsymbol{B}}(\boldsymbol{B},\boldsymbol{A})$$

All entries are for the case of nonharmonically related sinusoids, corresponding to the above integral formulations.

TABLE OF TWO-SINUSOID-INPUT DESCRIBING FUNCTIONS (TSIDFs) (Continued)

$rac{3}{4}B^2+rac{3}{2}A^2$	characteristic See Fig. D.4 and Sec. 5.1	I sin mx J_0 and J_1 are the Bessel functions of orders 0 and B B B I , respectively.	onic nonlinearity See Fig. D.5
$y = x^3$	18. Cubic characteristic	$y = M \sin mx$	29. Harmonic nonlinear

Figure D.1 Normalized relay with dead zone TSIDF. (Gibson and Sridhar, Ref. 10 of Chap. 5.)

Figure D.2 Normalized ideal-relay TSIDF.

Figure D.3 Normalized limiter TSIDF. (Gibson and Sridhar, Ref. 10 of Chap. 5.)

Figure D.4 Cubic characteristic TSIDF.

Figure D.5 Normalized harmonic nonlinearity TSIDF.