appendix C

TABLE OF DUAL-INPUT DESCRIBING FUNCTIONS (DIDFs)

The DIDF sinusoidal gain is given by (cf. Sec. 6.1)

$$
N_{A}(A, B, \omega)=n_{p}(A, B, \omega)+j n_{q}(A, B, \omega)=\frac{j}{\pi A} \int_{0}^{2 \pi} y(B+A \sin \psi, A \omega \cos \psi) e^{-j \varphi} d \psi
$$

and the corresponding dc gain is given by (cf. Sec. 6.1)

$$
N_{B}(A, B, \omega)=\frac{1}{2 \pi B} \int_{0}^{2 \pi} y(B+A \sin \psi, A \omega \cos \psi) d \psi
$$

In this table we employ the "saturation function" (cf. Sec. 2.3) denoted by

$$
\begin{aligned}
f(\gamma) & =-1 & & \gamma<-1 \\
& =\frac{2}{\pi}\left(\sin ^{-1} \gamma+\gamma \sqrt{1-\gamma^{2}}\right) & & |\gamma| \leq 1 \\
& =1 & & \gamma>1
\end{aligned}
$$

and the associated function (cf. Sec. 6.2)

$$
\begin{aligned}
g(\gamma) & =\frac{2}{\pi}\left(\gamma \sin ^{-1} \gamma+\sqrt{1-\gamma^{2}}\right) & & |\gamma| \leq 1 \\
& =|\gamma| & & |\gamma|>1
\end{aligned}
$$

These functions are plotted in Fig. C.1. Two additional functions of considerable use are
and

$$
\begin{aligned}
p(\gamma) & =-\frac{1}{2} & & \gamma<-1 \\
& =\frac{1}{\pi} \sin ^{-1} \gamma & & |\gamma| \leq 1 \\
& =\frac{1}{2} & & \gamma>1 \\
q(\gamma) & =\frac{2}{\pi} \sqrt{1-\gamma^{2}} & & |\gamma| \leq 1 \\
& =0 & & |\gamma|>1
\end{aligned}
$$

These functions are plotted in Fig. C.2.
table of dual-input describing functions (didFs) (Continued)

Nonlinearity	Comments	

TABLE OF DUAL-INPUT DESCRIBING FUNCTIONS (DIDFs) (Continued)

Nonlinearity	Comments	$N_{B}(A, B, \omega), n_{p}(A, B, \omega)$, and $n_{q}(A, B, \omega)$

TABLE OF DUAL-INPUT DESCRIBING FUNCTIONS (DIDFs) (Continued)

TABLE OF DUAL-INPUT DESCRIBING FUNCTIONS (DIDFs) (Continued)

Nonlinearity	Comments	$N_{B}(A, B, \omega), n_{p}(A, B, \omega)$, and $n_{q}(A, B, \omega)$
$y=x^{n}$ 24.	$n=3,5,7, \ldots$ See Sec. 6.2	$\begin{aligned} & N_{B}=\frac{1}{\sqrt{\pi}} \sum_{k(0 \mathrm{od})=1}^{n} \frac{n!}{(n-k)!k!} A^{n-k} B^{k-1} \frac{\Gamma\left(\frac{n-k+1}{2}\right)}{\Gamma\left(\frac{n-k+2}{2}\right)} \\ & n_{p}=\frac{2}{\sqrt{\pi}} \sum_{k(\text { even })=0}^{n-1} \frac{n!}{(n-k)!k!} A^{n-k-1} B^{k} \frac{\Gamma\left(\frac{n-k+2}{2}\right)}{\Gamma\left(\frac{n-k+3}{2}\right)} \\ & n_{q}=0 \end{aligned}$
$y=M \sin m x$ 29. Harmonic nonlinearity		$\begin{aligned} N_{B} & =\frac{M}{B} J_{0}(m A) \sin m B \\ n_{p} & =\frac{2 M}{A} J_{1}(m A) \cos m B \\ n_{q} & =0 \end{aligned}$
$y=M \sinh m x$ 30.	I_{0} and I_{1} are modified Bessel functions of orders 0 and 1 , respectively.	$\begin{aligned} N_{B} & =\frac{M}{B} I_{0}(m A) \sinh m B \\ n_{p} & =\frac{2 M}{A} I_{1}(m A) \cosh m B \\ n_{q} & =0 \end{aligned}$

TABLE OF DUAL-INPUT DESCRIBING FUNCTIONS (DIDFs) (Continued)

Nonlinearity	Comments	$N_{B}(A, B, \omega), n_{p}(A, B, \omega)$, and $n_{q}(A, B, \omega)$
 42.	$A-\|B\|>\frac{D}{m}+\delta$	$\begin{aligned} N_{B} & =\frac{m}{4}\left[g\left(\frac{\frac{D}{m}+\delta+B}{A}\right)-g\left(\frac{\frac{D}{m}+\delta-B}{A}\right)+g\left(\frac{\frac{D}{m}-\delta+B}{A}\right)-g\left(\frac{\frac{D}{m}-\delta-B}{A}\right)\right] \\ n_{p} & =\frac{m}{4}\left[f\left(\frac{\frac{D}{m}+\delta+B}{A}\right)+f\left(\frac{\frac{D}{m}+\delta-B}{A}\right)+f\left(\frac{\frac{D}{m}-\delta+B}{A}\right)+f\left(\frac{\frac{D}{m}-\delta-B}{A}\right)\right] \\ n_{q} & =-\frac{4 D \delta}{\pi A^{2}} \end{aligned}$
 43.	$A-\|B\|>\delta$	$\begin{aligned} & N_{B}=\frac{D}{\pi B}\left(\sin ^{-1} \frac{\delta+B}{A}-\sin ^{-1} \frac{\delta-B}{A}\right)+m \\ & n_{p}=\frac{2 D}{\pi A}\left[\sqrt{1-\left(\frac{\delta+B}{A}\right)^{2}}+\sqrt{1-\left(\frac{\delta-B}{A}\right)^{2}}\right]+m \\ & n_{Q}=-\frac{4 D \delta}{\pi A^{2}} \end{aligned}$
 44. Negative deficiency	$A-\|B\|>\delta$	$\begin{aligned} N_{B} & =\frac{D}{\pi B}\left(\sin ^{-1} \frac{\delta+B}{A}-\sin ^{-1} \frac{\delta-B}{A}\right)+\frac{D}{\delta} \\ n_{p} & =\frac{2 D}{\pi A}\left[\sqrt{1-\left(\frac{\delta+B}{A}\right)^{2}}+\sqrt{1-\left(\frac{\delta-B}{A}\right)^{2}}\right]+\frac{D}{\delta} \\ n_{q} & =-\frac{4 D \delta}{\pi A^{2}} \end{aligned}$

table of dual-input describing functions (DidFs) (Continued)

Nonlinearity	Comments	$N_{B}(A, B, \omega), n_{p}(A, B, \omega)$, and $n_{q}(A, B, \omega)$

TABLE OF DUAL-INPUT DESCRIBING FUNCTIONS (DIDFs) (Continued)

Nonlinearity	Comments	$N_{B}(A, B, \omega), n_{p}(A, B, \omega)$, and $n_{\theta}(A, B, \omega)$
55.	$A+\|B\|<\delta$ $A-\|B\|>\delta$	N_{B} (see absolute-value case) n_{p} (see absolute-value case) $n_{a}=0$ $\begin{aligned} & N_{B}=\frac{D}{2 \delta} \frac{A}{B}\left[-g\left(\frac{\delta-B}{A}\right)+2 g\left(\frac{B}{A}\right)-g\left(\frac{\delta+B}{A}\right)\right]+\frac{D}{B} \\ & n_{y}=\frac{D}{\pi \delta}\left[f\left(\frac{\delta-B}{A}\right)+2 f\left(\frac{B}{A}\right)-f\left(\frac{\delta+B}{A}\right)\right] \\ & \eta_{q}=0 \end{aligned}$
 56. Input- and output-biased ideal relay	$A-\|B\|>\delta$	$\begin{aligned} & N_{B}=\frac{D_{1}-D_{2}}{2 B}-\frac{D_{1}+D_{2}}{\pi B} \sin ^{-1} \frac{\delta-B}{A} \\ & n_{p}=\frac{2\left(D_{1}+D_{2}\right)}{\pi A} \sqrt{1-\left(\frac{\delta-B}{A}\right)^{2}} \\ & n_{q}=0 \end{aligned}$
 57. Input-biased ideal relay	$A-\|B\|>\delta$	$\begin{aligned} N_{B} & =\frac{2 D}{\pi B} \sin ^{-1} \frac{B-\delta}{A} \\ n_{\mathcal{D}} & =\frac{4 D}{\pi A} \sqrt{1-\left(\frac{\delta-B}{A}\right)^{2}} \\ n_{q} & =0 \end{aligned}$

		.
$\begin{gathered} y^{\prime} \mid \\ D_{1} \dagger \square \square \\ \square \end{gathered}$	$A-\|B\|>\delta(\epsilon+1)$	$N_{B}=\frac{1}{2 \pi B}\left\{\left(D_{1}+D_{2}\right)\left[\pi-\sin ^{-1} \frac{\delta(\epsilon-1)-B}{A}-\sin ^{-1} \frac{\delta(\epsilon+1)-B}{A}\right]-2 \pi D_{2}\right\}$
 58. Input- and output-biased rectangular hysteresis		$\begin{aligned} & n_{p}=\frac{D_{1}+D_{2}}{\pi A}\left\{\sqrt{1-\left[\frac{\delta(\epsilon+1)-B}{A}\right]^{2}}+\sqrt{1-\left[\frac{\delta(\epsilon-1)-B}{A}\right]^{2}}\right\} \\ & n_{q}=-\frac{2\left(D_{1}+D_{2}\right) \delta}{\pi A^{2}} \end{aligned}$

Figure C. 1 Graphs of $f(\gamma)$ and $g(\gamma)$.

Figure C. 2 Graphs of $p(\gamma)$ and $q(\gamma)$.

