TABLE OF DUAL-INPUT DESCRIBING FUNCTIONS (DIDFs)

The DIDF sinusoidal gain is given by (cf. Sec. 6.1)

APPENDIX C

 $N_{\mathcal{A}}(A,B,\omega) = n_{p}(A,B,\omega) + jn_{q}(A,B,\omega) = \frac{j}{\pi A} \int_{0}^{2\pi} y(B+A\sin\psi,A\omega\cos\psi)e^{-i\psi}\,d\psi$

and the corresponding dc gain is given by (cf. Sec. 6.1)

$$N_B(A,B,\omega) = \frac{1}{2\pi B} \int_0^{2\pi} y(B + A \sin \psi, A\omega \cos \psi) \, d\psi$$

In this table we employ the "saturation function" (cf. Sec. 2.3) denoted by

$$f(\gamma) = -1 \qquad \gamma < -1$$
$$= \frac{2}{\pi} (\sin^{-1}\gamma + \gamma\sqrt{1-\gamma^2}) \qquad |\gamma| \le 1$$
$$= 1 \qquad \gamma > 1$$

and the associated function (cf. Sec. 6.2)

$$g(\gamma) = \frac{2}{\pi} \left(\gamma \sin^{-1} \gamma + \sqrt{1 - \gamma^2} \right) \quad |\gamma| \le 1$$
$$= |\gamma| \qquad \qquad |\gamma| > 1$$

These functions are plotted in Fig. C.1. Two additional functions of considerable use are

$$p(\gamma) = -\frac{1}{2} \qquad \gamma < -1$$
$$= \frac{1}{\pi} \sin^{-1} \gamma \qquad |\gamma| \le 1$$
$$= \frac{1}{2} \qquad \gamma > 1$$
$$q(\gamma) = \frac{2}{\pi} \sqrt{1 - \gamma^2} \qquad |\gamma| \le 1$$
$$= 0 \qquad |\gamma| > 1$$

and

These functions are plotted in Fig. C.2.

Nonlinearity	Comments	$N_B(A,B,\omega), n_p(A,B,\omega), \text{ and } n_q(A,B,\omega)$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array}$ 1. General odd quantizer	$\delta_{n+1} > A + B > \delta_n$ $D_0 = 0$	$N_{B} = \frac{1}{B} \sum_{i=1}^{n} (D_{i} - D_{i-1}) \left[p \left(\frac{\delta_{i} + B}{A} \right) - p \left(\frac{\delta_{i} - B}{A} \right) \right]$ $n_{p} = \frac{1}{A} \sum_{i=1}^{n} (D_{i} - D_{i-1}) \left[q \left(\frac{\delta_{i} + B}{A} \right) + q \left(\frac{\delta_{i} - B}{A} \right) \right]$ $n_{q} = 0$
2. Uniform quantizer or granularity	$\frac{2n+1}{2}h > A + B $ $> \frac{2n-1}{2}h$	$N_B = \frac{D}{B} \sum_{i=1}^n \left[p\left(\frac{2i-1}{2}h+B\right) - p\left(\frac{2i-1}{2}h-B\right) \right]$ $n_p = \frac{D}{A} \sum_{i=1}^n \left[q\left(\frac{2i-1}{2}h+B\right) + q\left(\frac{2i-1}{2}h-B\right) \right]$ $n_q = 0$
3. Relay with dead zone		$N_{B} = \frac{D}{B} \left[p\left(\frac{\delta + B}{A}\right) - p\left(\frac{\delta - B}{A}\right) \right]$ $n_{p} = \frac{D}{A} \left[q\left(\frac{\delta + B}{A}\right) + q\left(\frac{\delta - B}{A}\right) \right]$ $n_{q} = 0$

$N_B = \frac{2D}{\pi B} \sin^{-1} \frac{B}{A}$	$n_{p} = \frac{4D}{\pi A} \sqrt{1 - \left(\frac{B}{A}\right)^{2}}$ $n_{q} = 0$	$N_B = \frac{2D}{\pi B} \sin^{-1} \frac{B}{A} + m$ $n_p = \frac{4D}{\pi A} \sqrt{1 - \left(\frac{B}{A}\right)^2} + m$ $n_q = 0$	$N_B = \frac{2D}{\pi B} \sin^{-1} \frac{B}{A} + \frac{A}{2B} \sum_{i=1}^n (m_i - m_{i+1}) \left[g\left(\frac{\delta_i + B}{A}\right) - g\left(\frac{\delta_i - B}{A}\right) \right] + m_{n+1}$ $n_P = \frac{4D}{\pi A} \sqrt{1 - \left(\frac{B}{A}\right)} + \frac{1}{2} \sum_{i=1}^n (m_i - m_{i+1}) \left[f\left(\frac{\delta_i + B}{A}\right) + f\left(\frac{\delta_i - B}{A}\right) \right] + m_{n+1}$ $n_q = 0$
A > B	See Sec. 6.2	A > B	$\delta_{n+1} > A + B > \delta_n$ and $A > B $
	*	×	m, m

¥.

541

(Continued)	
(DIDFs)	
FUNCTIONS	
DESCRIBING	
DUAL-INPUT	
Ъ С	
TABLE	

÷.

$N_{B} = \frac{mA}{2B} \left[g\left(\frac{\delta_{2} + B}{A} \right) - g\left(\frac{\delta_{2} - B}{A} \right) - g\left(\frac{\delta_{1} + B}{A} \right) + g\left(\frac{\delta_{1} - B}{A} \right) \right]$ $n_{p} = \frac{m}{2} \left[f\left(\frac{\delta_{2} + B}{A} \right) + f\left(\frac{\delta_{2} - B}{A} \right) - f\left(\frac{\delta_{1} + B}{A} \right) - f\left(\frac{\delta_{1} - B}{A} \right) \right]$ $n_{q} = 0$	$\begin{split} N_B &= \frac{A}{2B} \left\{ (m_1 - m_2) \left[g \left(\frac{\delta_2 + B}{A} \right) - g \left(\frac{\delta_2 - B}{A} \right) \right] \\ &- m_1 \left[g \left(\frac{\delta_1 + B}{A} \right) - g \left(\frac{\delta_1 - B}{A} \right) \right] \right\} + m_2 \\ n_p &= \frac{m_1 - m_2}{2} \left[f \left(\frac{\delta_2 + B}{A} \right) + f \left(\frac{\delta_2 - B}{A} \right) \right] - \frac{m_1}{2} \left[f \left(\frac{\delta_1 + B}{A} \right) + f \left(\frac{\delta_1 - B}{A} \right) \right] + m_2 \end{split}$	$N_{B} = m \left\{ 1 - \frac{A}{2B} \left[g \left(\frac{\delta + B}{A} \right) - g \left(\frac{\delta - B}{A} \right) \right] \right\} + \frac{D}{B} \left[P \left(\frac{\delta + B}{A} \right) - P \left(\frac{\delta - B}{A} \right) \right]$ $n_{p} = m \left\{ 1 - \frac{1}{2} \left[f \left(\frac{\delta + B}{A} \right) + f \left(\frac{\delta - B}{A} \right) \right] \right\} + \frac{D}{A} \left[g \left(\frac{\delta + B}{A} \right) + g \left(\frac{\delta - B}{A} \right) \right]$ $n_{q} = 0$
× •	arity	E ×
$m^{(\delta_2 - \delta_1)} = \frac{1}{\delta_1 \delta_2}$	$m_{i}(\delta_{2} - \delta_{1}) = \frac{y}{\delta_{1} - \delta_{2}}$ $m_{i}(\delta_{2} - \delta_{1}) = \frac{y}{\delta_{1} - \delta_{2}}$ 11. Gain-changing nonline: with dead zone	21

(pən	
DFs) (Contin	
CTIONS (D	
BING FUN	
UT DESCRI	
DUAL-INP	
TABLE OF	

$N_B(A,B,\omega), n_p(A,B,\omega)$, and $n_o(A,B,\omega)$	$N_{B} = \frac{A}{2B} (m_{1} - m_{2}) \left[g \left(\frac{\delta + B}{A} \right) - g \left(\frac{\delta - B}{A} \right) \right] + m_{2} + \frac{D}{B} \left[P \left(\frac{\delta + B}{A} \right) - P \left(\frac{\delta - B}{A} \right) \right]$ $n_{p} = \frac{1}{2} (m_{1} - m_{2}) \left[f \left(\frac{\delta + B}{A} \right) + f \left(\frac{\delta - B}{A} \right) \right] + m_{2} + \frac{D}{A} \left[q \left(\frac{\delta + B}{A} \right) + q \left(\frac{\delta - B}{A} \right) \right]$ $n_{q} = 0$	$N_{B} = \frac{D}{B} \left[\frac{2}{\pi} \sin^{-1} \frac{B}{A} - P\left(\frac{\delta + B}{A} \right) + P\left(\frac{\delta - B}{A} \right) \right]$ $n_{p} = \frac{D}{A} \left[\frac{4}{\pi} \sqrt{1 - \left(\frac{B}{A} \right)^{2}} - q\left(\frac{\delta + B}{A} \right) - q\left(\frac{\delta - B}{A} \right) \right]$ $n_{q} = 0$
Comments		A > B
Nonlinearity	13. $D + \frac{y}{m_1 6} + \frac{y}{m_1 6} + \frac{y}{m_1 m_1}$	× q , , , , , , , , , , , , , , , , , ,

y = c		$N_B = rac{c}{B}$
15.		$n_p = 0$ $n_q = 0$
y = x		$N_B = 1$ $n_v = 1$
16. Linear gain		$n_a = 0$
y = x x		$N_B = \frac{A^2}{\pi B} \left\{ \left[1 + 2\left(\frac{B}{A}\right)^2 \right] \sin^{-1}\frac{B}{A} + 3\frac{B}{A}\sqrt{1 - \left(\frac{B}{A}\right)^2} \right\}$
		$n_p = \frac{8}{3\pi} A\left\{ \left[1 + \frac{1}{2} \left(\frac{B}{A} \right)^2 \right] \sqrt{1 - \left(\frac{B}{A} \right)^2} + \frac{3}{2} \frac{B}{A} \sin^{-1} \frac{B}{A} \right\}$
17. Odd square law		$n_q = 0$
$y = x^3$		$N_B = \frac{3}{2}A^2 + B^2$ $n_p = \frac{3}{2}A^2 + 3B^2$
18. Cubic characteristic	See Sec. 6.2	$n_q = 0$
$y = x^5$		$N_B = \frac{1}{3} \frac{5}{6} A^4 + 5 A^2 B^2 + B^4$ $n_P = \frac{5}{6} A^4 + \frac{1}{2} A^2 B^2 + 5 B^4$
20. Quintic characteristic		$n_q = 0$
$y = x^2$		$N_B = \frac{3.5}{16}A^6 + \frac{2.5}{2.6}A^4B^3 + \frac{3.1}{2.4}A^3B^4 + B^6$ $n_P = \frac{3.5}{3.4}A^6 + \frac{2.9}{2.6}A^4B^2 + \frac{2.6}{2.6}A^2B^4 + 7B^6$
22.		$n_q = 0$

Nonlinearity	Comments	$N_B(A,B,\omega), n_p(A,B,\omega), \text{ and } n_q(A,B,\omega)$
$y = x^n$	$n = 3, 5, 7, \ldots$	$N_{B} = \frac{1}{\sqrt{\pi}} \sum_{k(\text{odd})=1}^{n} \frac{n!}{(n-k)! k!} A^{n-k} B^{k-1} \frac{\Gamma\left(\frac{n-k+1}{2}\right)}{\Gamma\left(\frac{n-k+2}{2}\right)}$
		$n_{p} = \frac{2}{\sqrt{\pi}} \sum_{k \text{ (even)}=0}^{n-1} \frac{n!}{(n-k)! k!} A^{n-k-1} B^{k} \frac{\Gamma\left(\frac{n-k+2}{2}\right)}{\Gamma\left(\frac{n-k+3}{2}\right)}$
•		$n_q = 0$
24.	See Sec. 6.2	
$y = M \sin mx$		$N_B = \frac{M}{B} J_0(mA) \sin mB$
		$n_p = \frac{2M}{A} J_1(mA) \cos mB$
		$n_q = 0$
29. Harmonic nonlinearity		
$y = M \sinh mx$	I ₀ and I ₁ are modified Bessel functions of orders 0 and 1, respectively.	$N_B = \frac{M}{B} I_0(mA) \sinh mB$ $n_p = \frac{2M}{A} I_1(mA) \cosh mB$ $n_q = 0$
30.		

ingen in Se se se

Nonlinearity	Comments	$N_B(A,B,\omega), n_p(A,B,\omega),$ and $n_q(A,B,\omega)$
42.	$A- B >\frac{D}{m}+\delta$	$N_{B} = \frac{m}{4} \left[g \left(\frac{D}{m} + \delta + B \right) - g \left(\frac{D}{m} + \delta - B \right) + g \left(\frac{D}{m} - \delta + B \right) - g \left(\frac{D}{m} - \delta - B \right) \right]$ $n_{p} = \frac{m}{4} \left[f \left(\frac{D}{m} + \delta + B \right) + f \left(\frac{D}{m} + \delta - B \right) + f \left(\frac{D}{m} - \delta + B \right) + f \left(\frac{D}{m} - \delta - B \right) \right]$ $n_{q} = -\frac{4D\delta}{\pi A^{2}}$
43.	$ A - B > \delta$	$N_B = \frac{D}{\pi B} \left(\sin^{-1} \frac{\delta + B}{A} - \sin^{-1} \frac{\delta - B}{A} \right) + m$ $n_p = \frac{2D}{\pi A} \left[\sqrt{1 - \left(\frac{\delta + B}{A}\right)^2} + \sqrt{1 - \left(\frac{\delta - B}{A}\right)^2} \right] + m$ $n_q = -\frac{4D\delta}{\pi A^2}$
44. Negative deficiency	$A - B > \delta$	$N_B = \frac{D}{\pi B} \left(\sin^{-1} \frac{\delta + B}{A} - \sin^{-1} \frac{\delta - B}{A} \right) + \frac{D}{\delta}$ $n_p = \frac{2D}{\pi A} \left[\sqrt{1 - \left(\frac{\delta + B}{A}\right)^2} + \sqrt{1 - \left(\frac{\delta - B}{A}\right)^2} \right] + \frac{D}{\delta}$ $n_q = -\frac{4D\delta}{\pi A^2}$

a bia

Nonlinearity	Comments	$N_B(A,B,\omega), n_p(A,B,\omega), {f and} n_q(A,B,\omega)$
x A + B h th		$N_B = 1$ $n_P = \frac{1}{2} \left[1 + f \left(1 - \frac{b}{A} \right) \right]$ $n_q = -\frac{1}{\pi} \left[2\frac{b}{A} - \left(\frac{b}{A} \right)^2 \right]$
1 m 1	B > A	$N_B = m_1$ $n_2 = m_1$ $n_q = 0$
×	-A < B < A	$N_{B} = \frac{m_{1} + m_{2}}{2} + \frac{m_{1} - m_{3}}{2} \frac{A}{B} \delta \left(\frac{B}{A}\right)$ $n_{p} = \frac{m_{1} + m_{2}}{2} + \frac{m_{1} - m_{2}}{2} \int \left(\frac{B}{A}\right)$ $n_{q} = 0$
	B < -A	$N_B = m_2$ $n_p = m_2$ $n_q = 0$
	See Sec. 6.2	

	B > A	$N_B = m$ $n_p = m$ $n_n = 0$
	-A < B < A	$N_B = m \frac{A}{B} S \left(\frac{B}{A} \right)$
52. Absolute value		$n_p = mf\left(rac{B}{A} ight)$
	B < -A	$n_q = 0$ $N_B = -m$
		$n_p = -m$ $n_q = 0$
y = x ²		$N_B=rac{1}{B}[B^2+rac{1}{2}A^2]$
		$n_p = 2B$ $n_q = 0$
53. Square law		
2	$A + B < \delta$	$N_B = 0$ $n_p = 0$ $n_q = 0$
	$A- B >\delta$	$N_B = \frac{D}{\pi B} \left(\pi - \sin^{-1} \frac{\delta - B}{A} - \sin^{-1} \frac{\delta + B}{A} \right)$
54.		$n_p = rac{2D}{\pi A} \left[\sqrt{1 - \left(rac{\delta - B}{A} ight)^2} - \sqrt{1 - \left(rac{\delta + B}{A} ight)^2} ight]$
551		$n_q = 0$

- 34° -

Nonlinearity	Comments	$N_{I\!\!B}(\mathcal{A},\mathcal{B},\omega), n_{p}(\mathcal{A},\mathcal{B},\omega)$, and $n_{o}(\mathcal{A},\mathcal{B},\omega)$
À	$A + B < \delta$	N_B (see absolute-value case) n_p (see absolute-value case) $n_q = 0$
	$A - B > \delta$	$N_B = \frac{D}{2\delta} \frac{A}{B} \left[-g \left(\frac{\delta - B}{A} \right) + 2g \left(\frac{B}{A} \right) - g \left(\frac{\delta + B}{A} \right) \right] + \frac{D}{B}$
55.		$n_{p} = \frac{D}{\pi\delta} \left[f\left(\frac{\delta - B}{A}\right) + 2f\left(\frac{B}{A}\right) - f\left(\frac{\delta + B}{A}\right) \right]$ $\eta_{q} = 0$
	$A - B > \delta$	$N_B = \frac{D_1 - D_2}{2B} - \frac{D_1 + D_2}{\pi B} \sin^{-1} \frac{\delta - B}{A}$
		$n_p = rac{2(D_1+D_2)}{\pi A}\sqrt{1-\left(rac{\delta-B}{A} ight)^2}$
56. Input- and output-biased ideal relay		0 ² H
	$A - B > \delta$	$N_B = \frac{2D}{\pi B} \sin^{-1} \frac{B - \delta}{A}$
<i>a d d d d d d d d d d</i>		$n_p = rac{4D}{\pi A} \sqrt{1 - \left(rac{\delta - B}{A} ight)^2},$ $n_q = 0$
57. Input-biased ideal relay		

¥. .

Figure C.1 Graphs of $f(\gamma)$ and $g(\gamma)$.

554

Figure C.2 Graphs of $p(\gamma)$ and $q(\gamma)$.