16.21 Techniques of Structural Analysis and Design Spring 2005 Unit \#9 - Calculus of Variations

Raúl Radovitzky

March 28, 2005

Let u be the actual configuration of a structure or mechanical system. u satisfies the displacement boundary conditions: $u=u^{*}$ on S_{u}. Define:

$$
\begin{gathered}
\bar{u}=u+\alpha v, \quad \text { where: } \\
\alpha: \text { scalar }
\end{gathered}
$$

$$
v: \text { arbitrary function such that } v=0 \text { on } S_{u}
$$

We are going to define αv as δu, the first variation of u :

$$
\begin{equation*}
\delta u=\alpha v \tag{1}
\end{equation*}
$$

Schematically:

As a first property of the first variation:

$$
\frac{d \bar{u}}{d x}=\frac{d u}{d x}+\underbrace{\alpha \frac{d v}{d x}}
$$

so we can identify $\alpha \frac{d v}{d x}$ with the first variation of the derivative of u :

$$
\delta\left(\frac{d u}{d x}\right)=\alpha \frac{d v}{d x}
$$

But:

$$
\alpha \frac{d v}{d x}=\frac{\alpha d v}{d x}=\frac{d}{d x}(\delta u)
$$

We conclude that:

$$
\delta\left(\frac{d u}{d x}\right)=\frac{d}{d x}(\delta u)
$$

Consider a function of the following form:

$$
F=F\left(x, u(x), u^{\prime}(x)\right)
$$

It depends on an independent variable x, another function of $x(u(x))$ and its derivative $\left(u^{\prime}(x)\right)$. Consider the change in F, when u (therefore u^{\prime}) changes:

$$
\begin{gathered}
\Delta F=F\left(x, u+\delta u, u^{\prime}+\delta u^{\prime}\right)-F\left(x, u, u^{\prime}\right) \\
=F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)-F\left(x, u, u^{\prime}\right)
\end{gathered}
$$

expanding in Taylor series:

$$
\begin{gathered}
\Delta F=F+\frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime}+\frac{1}{2!} \frac{\partial^{2} F}{\partial u^{2}}(\alpha v)^{2}+\frac{1}{2!} \frac{\partial^{2} F}{\partial u \partial u^{\prime}}(\alpha v)\left(\alpha v^{\prime}\right)+\cdots-F \\
=\frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime}+\text { h.o.t. }
\end{gathered}
$$

First total variation of F:

$$
\begin{gathered}
\delta F=\alpha\left[\lim _{\alpha \rightarrow 0} \frac{\Delta F}{\alpha}\right] \\
=\alpha \lim _{\alpha \rightarrow 0}\left[\frac{F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)-F\left(x, u, u^{\prime}\right)}{\alpha}\right] \\
=\alpha \lim _{\alpha \rightarrow 0}\left[\frac{\frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime}}{\alpha}\right]=\frac{\partial F}{\partial u} \alpha v+\frac{\partial F}{\partial u^{\prime}} \alpha v^{\prime} \\
\delta F=\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}
\end{gathered}
$$

Note that:

$$
\begin{gathered}
\delta F=\left.\alpha \frac{d F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)}{d \alpha}\right|_{\alpha=0} \\
\frac{d F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)}{d \alpha}=\frac{\partial F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)}{\partial u} v+\frac{\partial F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)}{\partial u^{\prime}} v^{\prime} \\
\text { evaluated at } \alpha=0 \\
\left.\frac{d F\left(x, u+\alpha v, u^{\prime}+\alpha v^{\prime}\right)}{d \alpha}\right|_{\alpha=0}=\frac{\partial F\left(x, u, u^{\prime}\right)}{\partial u} v+\frac{\partial F\left(x, u, u^{\prime}\right)}{\partial u^{\prime}} v^{\prime}
\end{gathered}
$$

Note analogy with differential calculus.

$$
\begin{gathered}
\delta\left(a F_{1}+b F_{2}\right)=a \delta F_{1}+b \delta F_{2} \text { linearity } \\
\delta\left(F_{1} F_{2}\right)=\delta F_{1} F_{2}+F_{1} \delta F_{2}
\end{gathered}
$$

etc
The conclusions for $F\left(x, u, u^{\prime}\right)$ can be generalized to functions of several independent variables x_{i} and functions $u_{i}, \frac{\partial u_{i}}{\partial x_{j}}$:

$$
F\left(x_{i}, u_{i}, \frac{\partial u_{i}}{\partial x_{j}}\right)
$$

We will be making intensive use of these properties of the variational operator δ :

$$
\begin{gathered}
\frac{d}{d x}(\delta u)=\frac{d}{d x}(\alpha v)=\alpha \frac{d v}{d x}=\delta\left(\frac{d u}{d x}\right) \\
\int \delta u d x=\int \alpha v d x=\alpha \int v d x=\delta\left(\int u d x\right)
\end{gathered}
$$

Concept of a functional

$$
I(u)=\int_{a}^{b} F\left(x, u(x), u^{\prime}(x)\right) d x
$$

First variation of a functional:

$$
\begin{gathered}
\delta I=\delta\left(\int F\left(x, u(x), u^{\prime}(x)\right) d x\right) \\
=\int \delta\left(F\left(x, u(x), u^{\prime}(x)\right)\right) d x \\
\delta I=\int\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}\right) d x
\end{gathered}
$$

Extremum of a functional

" u_{0} " is the minumum of a functional if:

$$
I(u) \geq I\left(u_{0}\right) \forall u
$$

A necessary condition for a functional to attain an extremum at " u_{0} " is:

$$
\delta I\left(u_{0}\right)=0, \text { or }\left.\frac{d I}{d \alpha}\left(u_{0}+\alpha v, u_{0}^{\prime}+\alpha v^{\prime}\right)\right|_{\alpha=0}=0
$$

Note analogy with differential calculus. Also difference since here we require $\frac{d F}{d \alpha}=0$ at $\alpha=0$.

$$
\delta I=\int_{a}^{b}\left(\frac{\partial F}{\partial u} \delta u+\frac{\partial F}{\partial u^{\prime}} \delta u^{\prime}\right) d x
$$

Integrate by parts the second term to get rid of δu^{\prime}.

$$
\begin{aligned}
\delta I= & \int_{a}^{b}\left[\frac{\partial F}{\partial u} \delta u+\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}} \delta u\right)-\delta u \frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)\right] d x \\
& =\int_{a}^{b}\left[\frac{\partial F}{\partial u}-\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)\right] \delta u d x+\left.\frac{\partial F}{\partial u^{\prime}} \delta u\right|_{a} ^{b}
\end{aligned}
$$

Require δu to satisfy homogeneous displacement boundary conditions:

$$
\delta u(b)=\delta u(a)=0
$$

Then:

$$
\delta I=\int_{a}^{b}\left[\frac{\partial F}{\partial u}-\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)\right] \delta u d x=0
$$

$\forall \delta u$ that satisfy the appropriate differentiability conditions and the homogeneous essential boundary conditions. Then:

$$
\frac{\partial F}{\partial u}-\frac{d}{d x}\left(\frac{\partial F}{\partial u^{\prime}}\right)=0
$$

These are the Euler-Lagrange equations corresponding to the variational problem of finding an extremum of the functional I.

Natural and essential boundary conditions A weaker condition on δu also allows to obtain the Euler equations, we just need:

$$
\left.\frac{\partial F}{\partial u^{\prime}} \delta u\right|_{a} ^{b}=0
$$

which is satisfied if:

- $\delta u(a)=0$ and $\delta u(b)=0$ as before
- $\delta u(b)=0$ and $\frac{\partial F}{\partial u^{\prime}}(b)=0$
- $\frac{\partial F}{\partial u^{\prime}}(a)=0$ and $\delta u(b)=0$
- $\frac{\partial F}{\partial u^{\prime}}(a)=0$ and $\frac{\partial F}{\partial u^{\prime}}(b)=0$

Essential boundary conditions: $\left.\delta u\right|_{S_{u}}=0$, or $u=u_{0}$ on S_{u}
Natural boundary conditions: $\frac{\partial F}{\partial u^{\prime}}=0$ on S.
Example: Derive Euler's equation corresponding to the total potential energy functional $\Pi=U+V$ of an elastic bar of length L, Young's modulus E, area of cross section A fixed at one end and subject to a load P at the other end.

$$
\Pi(u)=\int_{0}^{L} \frac{E A}{2}\left(\frac{d u}{d x}\right)^{2} d x-P u(L)
$$

Compute the first variation:

$$
\delta \Pi=\int \frac{E A}{2} \not 2 \frac{d u}{d x} \delta\left(\frac{d u}{d x}\right) d x-P \delta u(L)
$$

Integrate by parts

$$
\begin{aligned}
\delta \Pi & =\left[\frac{d}{d x}\left(E A \frac{d u}{d x} \delta u\right)-\frac{d}{d x}\left(E A \frac{d u}{d x}\right) \delta u\right] d x-P \delta u(L) \\
& =-\int_{0}^{L} \delta u \frac{d}{d x}\left(E A \frac{d u}{d x}\right) d x+\left.E A \frac{d u}{d x} \delta u\right|_{0} ^{L}-P \delta u(L)
\end{aligned}
$$

Setting $\delta \Pi=0, \forall \delta u / \delta u(0)=0$:

$$
\begin{gathered}
\frac{d}{d x}\left(E A \frac{d u}{d x}\right)=0 \\
P=\left.E A \frac{d u}{d x}\right|_{L}
\end{gathered}
$$

Extension to more dimensions

$$
\begin{gathered}
I=\int_{V} F\left(x_{i}, u_{i}, u_{i, j}\right) d V \\
\delta I=\int_{V}\left(\frac{\partial F}{\partial u_{i}} \delta u_{i}+\frac{\partial F}{\partial u_{i, j}} \delta u_{i, j}\right) d V \\
=\int_{V}\left[\frac{\partial F}{\partial u_{i}} \delta u_{i}+\frac{\partial}{\partial x_{j}}\left(\frac{\partial F}{\partial u_{i, j}} \delta u_{i}\right)-\frac{\partial}{\partial x_{j}}\left(\frac{\partial F}{\partial u_{i, j}}\right) \delta u_{i}\right] d V
\end{gathered}
$$

Using divergence theorem:

$$
\delta I=\int_{V}\left[\frac{\partial F}{\partial u_{i}}-\frac{\partial}{\partial x_{j}}\left(\frac{\partial F}{\partial u_{i, j}}\right)\right] \delta u_{i} d V+\int_{S} \frac{\partial F}{\partial u_{i, j}} \delta u_{i} n_{j} d S
$$

Extremum of functional I is obtained when $\delta I=0$, or when:

$$
\begin{gathered}
\frac{\partial F}{\partial u_{i}}-\frac{\partial}{\partial x_{j}}\left(\frac{\partial F}{\partial u_{i, j}}\right)=0, \text { and } \\
\delta u_{i}=0 \text { on } S_{u} \\
\frac{\partial F}{\partial u_{i, j}} n_{j} \text { on } S-S_{u}=S_{t}
\end{gathered}
$$

The boxed expressions constitute the Euler-Lagrange equations corresponding to the variational problem of finding an extremum of the functional I.

