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Let u be the actual configuration of a structure or mechanical system. u 
satisfies the displacement boundary conditions: u = u∗ on Su. Define: 

ū = u + αv, where:


α : scalar


v : arbitrary function such that v = 0 on Su


We are going to define αv as δu, the first variation of u: 

δu = αv (1) 

Schematically: 
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As a first property of the first variation :


dū du dv 
= + α 

dx dx ���dx� 

so we can identify α dv 
dx 

with the first variation of the derivative of u: �du� dv 
δ = α 

dx dx 

But: 

dv αdv d 
α 

dx 
= 

dx 
= 

dx
(δu) 

We conclude that: 

du d 
δ = (δu)

dx dx

Consider a function of the following form: 

F = F (x, u(x), u�(x)) 

It depends on an independent variable x, another function of x (u(x)) and its 
derivative (u�(x)). Consider the change in F , when u (therefore u�) changes: 

ΔF = F (x, u + δu, u� + δu�)− F (x, u, u�) 

= F (x, u + αv, u� + αv�)− F (x, u, u�) 

expanding in Taylor series: 

∂F ∂F 1 ∂2F 1 ∂2F 
ΔF = F + αv + αv� + 

∂u2 
(αv)2 + (αv)(αv�) + · · · − F 

∂u ∂u� 2! 2! ∂u∂u� 

∂F ∂F 
= αv + αv� + h.o.t. 

∂u ∂u� 

First total variation of F: 

ΔF 
δF = α lim 

α 0 α � →

F (x, u + αv, u� + αv�)− F (x, u, u�)� 
= α lim 

α 0 α→ � ∂F αv + ∂F αv� � ∂F ∂F 
= α lim ∂u ∂u� 

= αv + αv� 
α 0 α ∂u ∂u�→

∂F ∂F 
δF = δu + δu� 

∂u ∂u� 
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Note that: 

dF (x, u + αv, u� + αv�)
δF = α 

dα α=0 

since: 

dF (x, u + αv, u� + αv�) ∂F (x, u + αv, u� + αv�) 
= 

dα ∂u 
evaluated at α = 0 

∂F (x, u + αv, u� + αv�) 
v + v� 

∂u� 

dF (x, u + αv, u� + αv�) 
=


∂F (x, u, u�) 
v + 

∂F (x, u, u�) 
v

dα α=0 ∂u ∂u� 

Note analogy with differential calculus. 

δ(aF1 + bF2) = aδF1 + bδF2 linearity 

δ(F1F2) = δF1F2 + F1δF2 

etc 

The conclusions for F (x, u, u�) can be generalized to functions of several 
∂uiindependent variables xi and functions ui, ∂xj 

: 

F xi, ui, 
∂ui 

∂xj 

We will be making intensive use of these properties of the variational operator 
δ: 

d d dv du 
(δu) = (αv) = α = δ


dx dx dx dx 

δudx = αvdx = α vdx = δ udx 

Concept of a functional 

b 

F (x, u(x), u�(x))dxI(u) = 
a 
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First variation of a functional: �� � 
δI = δ F (x, u(x), u�(x))dx � � � 
= δ F (x, u(x), u�(x)) dx 

∂F ∂F 
δI = δu + δu� dx 

∂u ∂u� 

Extremum of a functional 
“u0 ” is the minumum of a functional if: 

I(u) ≥ I(u0)∀u 

A necessary condition for a functional to attain an extremum at “u0 ” is: 

dI 
δI(u0) = 0, or (u0 + αv, u0

� + αv�)�� = 0 
dα α=0 

Note analogy with differential calculus. Also difference since here we require 
dF = 0 at α = 0.
dα 

� b� �∂F ∂F 
δI = δu + δu� dx 

∂u ∂u�a 

Integrate by parts the second term to get rid of δu�. � b� � � � ��∂F d ∂F d ∂F 
δI = δu + δu − δu dx 

∂u dx ∂u� dx ∂u�a� b� � �� ∂F ��b∂F d ∂F 
= δudx + δu � 

∂u 
− 

dx ∂u� ∂u� aa 

Require δu to satisfy homogeneous displacement boundary conditions: 

δu(b) = δu(a) = 0 

Then: � b� � ��∂F d ∂F 
δI = δudx = 0,

∂u 
− 

dx ∂u�a 
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∀δu that satisfy the appropriate differentiability conditions and the homoge
neous essential boundary conditions. Then: 

∂F d ∂F 
= 0 

∂u 
− 

dx ∂u� 

These are the EulerLagrange equations corresponding to the variational 
problem of finding an extremum of the functional I. 

Natural and essential boundary conditions A weaker condition on 
δu also allows to obtain the Euler equations, we just need: 

∂F
 b 

δu = 0 
∂u� a 

which is satisfied if: 

• δu(a) = 0 and δu(b) = 0 as before 

• δu(b) = 0 and ∂F (b) = 0
∂u�


∂F
• 
∂u� (a) = 0 and δu(b) = 0 

• ∂F (a) = 0 and ∂F (b) = 0
∂u� ∂u� 

Essential boundary conditions: δu
 = 0, or u = u0 on SuSu 

Natural boundary conditions: ∂F = 0 on S.
∂u� 

Example: Derive Euler’s equation corresponding to the total po
tential energy functional Π = U + V of an elastic bar of length L, Young’s 
modulus E, area of cross section A fixed at one end and subject to a load P 
at the other end. � L EA du
�2 

Π(u) = dx − Pu(L)
2 dx0 

Compute the first variation: 

EA du du 
δΠ = 2 δ dx − Pδu(L)

� 2 
� 

dx dx 
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Integrate by parts � � � � � �d du d du 
δΠ = EA δu EA δu dx − Pδu(L)

dx dx 
− 

dx dx� L � � du ��Ld du 
= δu EA dx + EA δu � 

0 
− Pδu(L)− 

0 dx dx dx 

Setting δΠ = 0,∀ δu / δu(0) = 0: 

d du 
EA = 0 

dx dx 

du �
P = EA � 

dx L 

Extension to more dimensions 

I = F (xi, ui, ui,j )dV � � 
V �∂F ∂F 

δI = δui + δui,j dV 
V ∂ui ∂ui,j� � � � �∂F ∂ ∂F ∂ ∂F 

= δui + δui δui dV 
V ∂ui ∂xj ∂ui,j 

− 
∂xj ∂ui,j 

Using divergence theorem: 

∂F ∂ ∂F ∂F 
δI = δuidV + δuinjdS 

V ∂ui 

− 
∂xj ∂ui,j S ∂ui,j 

Extremum of functional I is obtained when δI = 0, or when: 

∂F ∂ ∂F 
= 0 , and 

∂ui 

− 
∂xj ∂ui,j 

δui = 0 on Su 

∂F 

∂ui,j 

nj onS − Su = St 

The boxed expressions constitute the EulerLagrange equations correspond
ing to the variational problem of finding an extremum of the functional I. 
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