16.21 Techniques of Structural Analysis and Design Spring 2004 Unit #8 - Principle of Virtual Forces

Raúl Radovitzky

March 18, 2005

Principle of Virtual Forces (PVF)

Consider a compatible displacement field u_i in a deforming structure B of volume V and its associated strain field:

$$\epsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) \tag{1}$$

The displacement field necessarily satisfies the displacement (essential) boundary conditions:

$$u_i = u_i^* \text{ on } S_u \tag{2}$$

where u_i^* are the imposed displacements on the displacement part of the boundary S_u . We multiply (1) by an somewhat arbitrary virtual stess field $\bar{\sigma}_{ij}$ to be further defined below and integrate over the volume of the material.

$$\int_{V} \left[\epsilon_{ij} - \frac{1}{2} (u_{i,j} + u_{j,i}) \right] \bar{\sigma}_{ij} dV = 0$$
(3)

In addition, we multiply (2) by a set of somewhat arbitrary boundary virtual tractions \bar{t}_i :

$$\int_{S_u} (u_i - u_i^*) \bar{t}_i dS = 0$$
(4)

Adding up (3) and (4) we obtain:

$$\int_{V} \left[\epsilon_{ij} - \frac{1}{2} (u_{i,j} + u_{j,i}) \right] \bar{\sigma}_{ij} dV + \int_{S_u} (u_i - u_i^*) \bar{t}_i dS = 0$$
(5)

We will require the virtual stress field and the external virtual tractions to be self-equilibrated, i.e.,

$$\bar{\sigma}_{ji,j} + \bar{f}_i = 0 \text{ in } B \tag{6}$$

$$\bar{t}_i = \bar{\sigma}_{ij} n_j \text{ on } S_t \tag{7}$$

where \bar{f}_i is the set of virtual body forces neccesary to internally equilibrate the virtual stresses. From (5):

$$\int_{V} \epsilon_{ij} \bar{\sigma}_{ij} dV - \int_{V} u_{i,j} \bar{\sigma}_{ij} dV + \int_{S_u} (u_i - u_i^*) \bar{\sigma}_{ij} n_j dS = 0$$
(8)

Making use of the now conventional tools of integration by parts and divergence theorem:

$$\int_{V} \epsilon_{ij} \bar{\sigma}_{ij} dV - \int_{V} \left[\left(u_i \bar{\sigma}_{ij} \right)_{,j} - u_i \bar{\sigma}_{ij,j} \right] dV + \int_{S_u} (u_i - u_i^*) \bar{\sigma}_{ij} n_j dS = 0$$
(9)

$$\int_{V} \epsilon_{ij} \bar{\sigma}_{ij} dV - \int_{S} u_i \bar{\sigma}_{ij} n_j dS + \int_{V} u_i \bar{\sigma}_{ij,j} dV + \int_{S_u} (u_i - u_i^*) \bar{\sigma}_{ij} n_j dS = 0 \quad (10)$$

The second integral may be reduced to the integral over S_u as the virtual stresses are admissible ($\bar{t}_i = \bar{\sigma}_{ij}n_j = 0$ on S_t). The resulting integral over S_u cancels with the fourth term. Using (6) and (7) results in:

$$\int_{V} \epsilon_{ij} \bar{\sigma}_{ij} dV + \int_{V} u_i (-\bar{f}_i) dV - \int_{S_u} u_i^* \bar{t}_i dS = 0$$
(11)

or:

$$\int_{V} \epsilon_{ij} \bar{\sigma}_{ij} dV = \int_{V} u_i \bar{f}_i dV + \int_{S_u} u_i^* \bar{t}_i dS, \ \forall \text{ admissible virtual stress fields}$$
(12)

which is the expression of the *Principle of virtual forces*.

Unit dummy load method

Provides a powerful tool to determine relations between forces and displacements in structures. If \mathbf{u}_0 is the actual displacement at the point of interest, we prescribe a virtual concentrated force $\mathbf{\bar{R}}_0$ at that point in the direction of the displacement. This virtual force induces a virtual stress field in the structure which is assumed in self equilibrium. The PVF then reads:

$$u_0 R_0 = \int_V \epsilon_{ij} \bar{\sigma}_{ij} dV \tag{13}$$

In particular R_0 may adopt the value 1 as there is no restriction of this kind on the virtual force field.

Example:

• Specialize the PVF for simple beam theory.

$$u_3(x_1^*)\bar{P} = \int_V (-x_3 u_3'') \frac{-\bar{M}x_3}{I} dx_1 = \int_0^L \frac{M}{EI} \bar{M} dx_1$$
(14)

• Use a virtual force \overline{P} at point x_1^* to determine the value of the displacement at the tip of a cantilever beam loaded with a tip load P. using the PVF expression obtained.

The actual moment distribution corresponding to the load P in a cantilever beam is $M = P(L - x_1)$, and the virtual moment distribution corresponding to the virtual load \bar{P} has the same form in this case $\bar{M} = \bar{P}(L - x_1)$. The PVF specializes to:

$$u_3(L)\bar{P} = \int_0^L \frac{P(L-x_1)}{EI}\bar{P}(L-x_1)dx_1$$
(15)

Eliminating \overline{P} (PVF holds for arbitrary values of it) and computing the integral:

$$u_3(L) = \int_0^L \frac{P(L-x_1)}{EI} \bar{P}(L-x_1) dx_1$$
(16)

$$u_3(L) = \frac{PL^3}{3EI} \tag{17}$$