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Principle of Virtual Displacements 

Consider a body in equilibrium. We know that the stress field must satisfy 
the differential equations of equilibrium. Multiply the differential equations 
of equilibrium by an “arbitrary” displacement field ui:¯

¯σji,j + fi ui = 0 (1) 

Note that the field ui is NOT the actual displacement field ui corresponding ¯
to the solution of the problem but a virtual displacement field. Therefore, 
equation (1) can be interpreted as the local expression of virtual work done 
by the actual stresses and the body forces on the virtual displacement ui and¯
that it must be zero. The total virtual work done on the body is obtained 
by integration over the volume: 

¯σji,j + fi uidV = 0 (2) 
V 
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and it must also be zero since the integrand is zero everywhere in the domain. 

¯ ¯σji,j uidV + fiuidV = 0 (3) � V V 

¯ ¯ ¯σji ui ,j 
− σji ui,j dV + fiuidV = 0 (4) � V V 

¯ ¯σji uinjdS − σij �̄ijdV + fiuidV = 0 (5) 
S V V 

The integral over the surface can be decomposed into two: an integral over the 
portion of the boundary where the actual external surface loads (tractions) 
are specified St and an integral over the portion of the boundary where the 
displacements are specified (supports) Su. This assumes that these sets are 
disjoint and complementary, i.e., 

S = Su ∪ St, Su ∩ St = ∅ (6) 
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St 

ti ūidS + 
Su 

σji ūinjdS − 
V 

σij �̄ijdV + 
V 

fi ūidV = 0 (7) 

We will require that the virtual displacements ūi vanish on Su, i.e., that the 
virtual displacement field satisfy the homogeneous essential boundary condi
tions : 

ūi(xj) = 0, if xj ∈ Su (8) 

Then, the second integral vanishes. The resulting expression is a statement 
of the Principle of Virtual Displacements (PVD): 

¯ ¯ ¯σij�ijdV = tiuidS + fiuidV (9) 
V St V 

It reads: The work done by the external tractions and body forces on an ad
missible (differentiable and satisfying the homogeneous boundary conditions 
but otherwise arbitrary) displacement field is equal to the work done by the 
equilibrated stresses (the actual solution of the problem) on the virtual strains 
(the strains produced by the virtual field). 

Example: Consider the bar under a tensile load shown in the figure:
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L

P
E, A

x1

The PVD applied to this case is:


dū1
σ11 dV = P ū1

dx1 x1=LV� L du1 dū1
A E dx1 = Pū1

dx1 dx1 x1=L0 
L d2u1d du1

EA ū1 u1 dx1 = P ¯¯ u1− 
dx2 

1dx1 dx1 x1=L0 � L d2u1du1 du1 

dx1 

EA
 ū1 EA ū1 
x1=0 

− EA u1dx1 = P ¯¯ u1 
=L 

− 
0 dx2 

1dx1 =Lx1 x1

The second term on the left hand side is zero because we have asked that 
u1 = 0 at the support. Note we have not asked for any condition on u1 at¯ ¯
x1 = L where the load is applied. � L d2u1

ū1 
x1=L 

− P 
du1

EA = EA
 ū1dx1
dx2 

1dx1 x1=L 0 

The only way this expression can be satisfied for any admissible virtual dis
placement field u1 is if: ¯

du1
P = EA 

dx1 x1=L 

and 

d2u1
EA = 0 

dx2 
1 

which represent the equilibrium conditions at the boundary and inside the 
bar, respectively: 

Aσ11P = A E

du1 

=

dx1 x1=L x1=L 

and 

d 
EA 

du1 d 
= σ11 = 0 

dx1 dx1 dx1 
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The solution of this problem is: 

u1(x1) = ax1 + b 

the boundary conditions are: 

u1(0) = 0 b = 0⇒ 
P 

= Ea 
A 

P 
u1 = x1

EA 

du1 P 
�11 = = 

dx1 EA 

P 
σ11 = E�11 = 

A 

Example: With the exact solution of the problem of the bar under 
a tensile load, verify the satisfaction of the PVD for the following virtual 
displacement fields: 

¯• u1 = ax1: � L P 
AE adx1 = PaL(?)

EA 0 

PaL = PaL q.e.d. 

¯ 2 • u1 = ax1: � L P 
AE 2ax1dx1 = PaL2(?)

EA 0 

A EP � � � 2aL2 

= PaL q.e.d. 
E A 2 

Remarks: 
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•	 Principle of Virtual Displacements: 

–	 enforces equilibrium (in weak form) 

–	 enforces traction (natural) boundary conditions 

–	 does NOT enforce displacement (essential) boundary conditions 

–	 will be satisfied for all equilibrated solutions, compatible or in
compatible 

Unit dummy displacement method 

Another application of the PVD: provides a way to compute reactions (or dis
placements) in structures directly from PVD. Consider the concentrated 
reaction force at point ��0�� of a structure in equilibrium under a set of loads 
and supports. We can prescribe an arbitrary admissible displacement field 
ūi and the PVD will hold. The unit dummy displacement method consists of 
choosing the virtual displacement field such that ūi(x0) = 1 in the direction 
of the reaction R0 we are interested in. Then the virtual work of the reaction 
is ū0 · R0 = |R0. The PVD then reads (in the absence of body forces): 

¯ ¯R0 u0 = σij�ijdV	 (10) · 
V 

R0 = σij �̄ijdV (11) 
V 

where �̄ij are the virtual strains produced by the virtual displacement field 
ū0. 

Example: 
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θ2

L1 L2 L3

E1

A1

E2

A2

E3

A3

v

P

Different materials and areas of cross section: E1, E2, E3, A1, A2, A3, but re
quire symmetry to simplify the problem: E3 = E1, A3 = A1. For a truss 
element: σ = E� (uniaxial state). 

P v̄ = A1L1σ1�̄1 + A2L2σ2�̄2 + A3L3σ3�̄3 

Note: the indices in these expressions just identify the truss element number. 
The goal is to provide expressions of the virtual strains �̄I in terms of the 
virtual displacement v̄ so that they cancel out. From the figure, the strains 
ensued by the truss elements as a result of a tip displacement v are: 

(L2 + v)2 + (L2 tan θ)2 − L1
�1 = �3 = 

L1 

L2 2 
2(1 + tan2 θ) + 2L2v + v − L1 

= 
L1 

neglecting the higher order term v2 and using 1 + tan2 θ = 1 + sin2 θ = 
cos2 θ 

cos2 θ+sin2 θ 1 = we obtain: 
cos2 θ cos2 θ 

L2 
2 + 2L2v − L1 

L1 1 + 2L2v − L1 
cos2 θ L2 2L2v1

�1 = �3 = = = 1 + 
L2 

− 1 
L1 L1 1 

were we have made use of the fact that: L2 = L1. We seek to extract 
cos θ 

the linear part of this strain, which should have a linear dependence on the 
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displacement v. This can be done by doing a Taylor series expansion of 
the square root term 

√
1 + 2x = 1 + x + O[x]2 (Mathematica tip: Taylor 

series expansions can be obtained by using the Series function. In this case: 
Series[Sqrt[1 + 2x], x, 0, 3]. 

L2 L2
�1 = �3 = 1 + 

L2 
v − 1 = v 

L2 
1 1 

which is the sought expression. The expression for �2 can 
much more straightforward manner: 

v 
�2 = 

L2 

be obtained in a


Applying the constitutive relation: σI = EI�I we can obtain the stresses in 
terms of the tip displacement v: 

L2 L2 v 
σ1 = E1 v, σ3 = E3 v, σ2 = E2

L2 L2 
1 1 L2 

This expressions for the strains above also apply for the case of a virtual 
displacement field whose value at the tip is v̄. The resulting virtual strains 
are: 

L2 L2 v̄
¯ ¯�̄1 = v, �̄3 = v, �̄2 = 

L2 L2 
1 1 L2 

Replacing in PVD: 

L2 L2 v v̄ L2 L2
P v̄ = A1L1 E1 v v̄ + A2L2 E2 + A3L3 E3 

L2 
v v̄� �� � L2 L2 � �� � L2 L2 � �� � L2 

1 1� ��1 � ���� � �� � ���� � ��1 � ���� 

As expected the v̄’s cancel out, as the principle must hold for all its admissible 
virtual values and we obtain an expression of the external load P and the 
resulting real displacement v. This expression can be simplified using: L2 = 
L1 cos θ = L3 cos θ: 

A1E1L
2 
1 cos2 θ v 

P = v + A2E2
L3 

1 L2 � A1E1 cos2 θ A2E2 

A3E3L
2 
3 cos2 θ 

+ v 
L3 

3 

A3E3 cos2 θ� 
P = + + v 

L1 L2 L3 � � v 
P = (A1E1 + A3E3) cos 3 θ + A2E2 

L2 

PL2 
v = 

(A1E1 + A3E3) cos3 θ + A2E2 
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Example:


L1 L2

E1, A1

P/2

P/2

u0
E2, A2

PVD: 

Pu0 = A1L1σ1�̄1 + A2L2σ2�̄2 ¯

uu0 ¯0
�1 = , σ1 = E1�1, �̄1 = 

L1 L1 

u0 ¯0u
�2 = , σ2 = E2�2, �̄2 =− 

L2 

− 
L2 

u u0)
¯

u0 ¯0 (−u0) (−¯
Pu0 = A1L1E1 + A2L2E2

L1 L1 L2 L2 

A1E1 A2E2
P = + u0

L1 L2 
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