16.21 Techniques of Structural Analysis and

Design
Spring 2004
Unit \#7 (continued)- Concepts of work and energy
Strain energy and potential energy of a beam
Raúl Radovitzky
March 2, 2005

Figure 1: Kinematic assumptions for a beam
Kinematic assumptions for a beam: From the figure: $A^{-} A^{\prime}=u_{3}\left(x_{1}\right)$. Assume small deflections: $B^{\prime} \sim B^{\prime \prime}, B \bar{B}^{\prime \prime}=u_{3}+d u_{3} . \quad \overline{C C}^{\prime}=u_{3}(x)+$
$u 1\left(x_{1}, x_{3}\right)$. Assume planar sections normal to the neutral axis remain planar after deformation. Then:

$$
\begin{gather*}
u_{3}=u_{3}\left(x_{1}\right) \tag{1}\\
u_{1}\left(x_{1}, x_{3}\right)=-x_{3} \frac{d u_{3}}{d x_{1}} \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
u_{3}\left(x_{1}\right) \text { is the only primary unknown of the problem } \tag{3}
\end{equation*}
$$

From these kinematic assumptions we can derive a theory for beams.
Strains:

$$
\begin{gather*}
\epsilon_{11}=\frac{d u_{1}}{d x_{1}}=-x_{3} \frac{d^{2} u_{3}}{d x_{1}^{2}} \tag{4}\\
\epsilon_{22}=\epsilon_{33}=-\nu \epsilon_{11}, \text { plane stress } \tag{5}\\
\epsilon_{13}=\frac{1}{2}\left(\frac{d u_{1}}{d x_{3}}+\frac{d u_{3}}{d x_{1}}\right)=\frac{1}{2}\left(-\frac{d u_{3}}{d x_{1}}+\frac{d u_{3}}{d x_{1}}\right)=0 \tag{6}
\end{gather*}
$$

Constitutive:

$$
\begin{equation*}
\sigma_{11}=E \epsilon_{11}=-E x_{3} \frac{d^{2} u_{3}}{d x_{1}^{2}} \tag{7}
\end{equation*}
$$

Equilibrium: Apply equilibrium (in the undeformed configuration) to integral quantities (moment M and shear force V). Definitions of integral quantities as forces "equivalent" to the internal stresses:

$$
\begin{gather*}
V\left(x_{1}\right)+\int_{A\left(x_{1}\right)} \sigma_{13} d_{A}=0 \tag{8}\\
M\left(x_{1}\right)+\int_{A\left(x_{1}\right)} \sigma_{11} x_{3} d A=0 \tag{9}
\end{gather*}
$$

replacing σ_{11} :

$$
\begin{gather*}
M\left(x_{1}\right)=\int_{A\left(x_{1}\right)}\left(-E \frac{d^{2} u_{3}}{d x_{1}^{2}} x_{3}^{2}\right) d A=E \frac{d^{2} u_{3}}{d x_{1}^{2}} \underbrace{\int_{3}^{2} d A}_{A\left(x_{1}\right)} \tag{10}\\
M\left(x_{1}\right)=E I\left(x_{1}\right) \frac{d^{2} u_{3}}{d x_{1}^{2}} \tag{11}
\end{gather*}
$$

Also note:

$$
\begin{equation*}
\sigma_{11}=-\frac{M x_{3}}{I} \tag{12}
\end{equation*}
$$

With these definitions we can apply equilibrium as shown in the figure:

$$
\begin{gather*}
\sum F_{x_{3}}=0: V-q d x_{1}-V-d V=0 \rightarrow \frac{d V}{d x_{1}}=-q \tag{13}\\
\sum M^{B}=0:-M+M+d M-V d x_{1}+q \frac{d x_{1}^{2}}{2}=0 \rightarrow \frac{d M}{d x_{1}}=V \tag{14}\\
\frac{d}{d x_{1}}\left(\frac{d M}{d x_{1}}\right)=-q \rightarrow \frac{d^{2} M}{d x_{1}^{2}}=-q \tag{15}
\end{gather*}
$$

Replacing equation (11) in the last expression:

$$
\begin{equation*}
\frac{d^{2}}{d x_{1}^{2}}\left(E I \frac{d^{2} u_{3}}{d x_{1}^{2}}\right)+q\left(x_{1}\right)=0 \tag{16}
\end{equation*}
$$

Fourth order differential equation governing the deflections of beams. Needs 4 boundary conditions. Examples:

- case a $u_{3}(0)=0, u_{3}^{\prime}(0)=0, u_{3}^{\prime \prime}(L)=0, u_{3}^{\prime \prime \prime}(L)=0$.
- case a $u_{3}(0)=0, u_{3}^{\prime \prime}(0)=0, u_{3}(L)=0, u_{3}^{\prime \prime}(L)=0$.

Strain energy of a beam Start from the general definition of strain energy density:

$$
\begin{equation*}
U_{0}=\int_{0}^{\epsilon_{i j}} \sigma_{i j} d \epsilon_{i j} \tag{17}
\end{equation*}
$$

for a linear elastic material we concluded:

$$
\begin{equation*}
U_{0}=\frac{1}{2} \sigma_{i j} \epsilon_{i j} \tag{18}
\end{equation*}
$$

Classical beam theory: $\sigma_{11} \neq 0$, all other stress components are zero.

$$
\begin{gather*}
U_{0}=\frac{1}{2} \sigma_{11} \epsilon_{11}=\frac{1}{2} E \epsilon_{11}^{2} \tag{19}\\
\epsilon_{11}=-x_{3} \frac{d^{2} u_{3}}{d x_{1}^{2}} \rightarrow U_{0}=\frac{1}{2} E x_{3}^{2}\left(\frac{d^{2} u_{3}}{d x_{1}^{2}}\right)^{2} \tag{20}
\end{gather*}
$$

$$
\begin{align*}
U & =\int_{V} U_{0} d V=\int_{V} \frac{1}{2} E x_{3}^{2}\left(\frac{d^{2} u_{3}}{d x_{1}^{2}}\right)^{2} d V \tag{22}\\
& =\frac{1}{2} \int_{0}^{L} E\left(\frac{d^{2} u_{3}}{d x_{1}^{2}}\right)^{2} \int_{A(x)} x_{3}^{2} d A d x_{1} \tag{23}\\
& U=\frac{1}{2} \int_{0}^{L} E I(x)\left(\frac{d^{2} u_{3}}{d x_{1}^{2}}\right)^{2} d x_{1}
\end{align*}
$$

also note:

$$
\begin{equation*}
U=\frac{1}{2} \int_{0}^{L} M\left(x_{1}\right) \frac{d^{2} u_{3}}{d x_{1}^{2}} d x_{1} \tag{25}
\end{equation*}
$$

Complementary strain energy of a beam
Complementary strain energy density:

$$
\begin{equation*}
U_{0}^{*}=\int_{0}^{\epsilon_{11}} \epsilon_{11} d \sigma_{11}=\frac{1}{2} \frac{\sigma_{11}^{2}}{E}=\frac{1}{2 E}\left(\frac{-M x_{3}}{I}\right)^{2} \tag{27}
\end{equation*}
$$

The complementary strain energy is then

$$
\begin{align*}
U_{c}=\int_{V} U_{0}^{*} d V & =\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I^{2}} \int_{A\left(x_{1}\right)} x_{3}^{2} d A d x_{1} \tag{28}\\
U_{c} & =\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I} d x_{1} \tag{29}
\end{align*}
$$

Potential of the external forces:

$$
\begin{gather*}
V=-\int_{S} t_{i} u_{i} d S-\int_{V} f_{i} u_{i} d V \tag{30}\\
V=-\int_{0}^{L} q\left(x_{1}\right) u_{3}\left(x_{1}\right) d x_{1}-P u_{3}(L)-M u_{3}^{\prime}(L) \tag{31}
\end{gather*}
$$

The total potential energy of the beam is:

$$
\begin{equation*}
\Pi\left(u_{3}\right)=\int_{0}^{L}\left[\frac{1}{2} E I\left(\frac{d^{2} u_{3}}{d x^{2}}\right)^{2} d x_{1}+q u_{3}\right]+P u_{3}(L)+M u_{3}^{\prime}(L) \tag{32}
\end{equation*}
$$

This is the expression we gave the first day of class!.

