16.21 Techniques of Structural Analysis and Design
 Spring 2005
 Unit \#6 - Boundary value problems in linear elasticity

Raúl Radovitzky

February 27, 2005

Figure 1: Schematic of generic problem in linear elasticity

- Equations of equilibrium (3 equations, 6 unknowns):

$$
\begin{equation*}
\sigma_{j i, j}+f_{i}=0 \tag{1}
\end{equation*}
$$

- Compatibility (6 equations, 9 unknowns):

$$
\begin{equation*}
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{2}
\end{equation*}
$$

- Constitutive Law (6 equations, 0 unknowns) :

$$
\begin{equation*}
\sigma_{i j}=C_{i j k l} \epsilon_{k l} \tag{3}
\end{equation*}
$$

- Boundary conditions of two types:
- Traction or natural boundary conditions: For tractions $\overline{\mathbf{t}}$ imposed on the portion of the surface of the body ∂B_{t} :

$$
\begin{equation*}
n_{i} \sigma_{i j}=t_{j}=\bar{t}_{j} \tag{4}
\end{equation*}
$$

- Displacement or essential boundary conditions: For displacements $\overline{\mathbf{u}}$ imposed on the portion of the surface of the body ∂B_{u}, this includes the supports for which we have $\overline{\mathbf{u}}=\mathbf{0}$:

$$
\begin{equation*}
u_{i}=\bar{u}_{i} \tag{5}
\end{equation*}
$$

One can prove existence and uniqueness of the solution (the fields: $\left.u_{i}\left(x_{j}\right), \epsilon_{i j}\left(x_{k}\right), \sigma_{i j}\left(x_{k}\right)\right)$ in B.

