## 16.21 Techniques of Structural Analysis and Design Spring 2005 Unit #6 - Boundary value problems in linear elasticity

Raúl Radovitzky

February 27, 2005



Figure 1: Schematic of generic problem in linear elasticity

• Equations of equilibrium ( 3 equations, 6 unknowns ):

$$\sigma_{ji,j} + f_i = 0 \tag{1}$$

• Compatibility ( 6 equations, 9 unknowns):

$$\epsilon_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \tag{2}$$

• Constitutive Law (6 equations, 0 unknowns) :

$$\sigma_{ij} = C_{ijkl}\epsilon_{kl} \tag{3}$$

- Boundary conditions of two types:
  - Traction or natural boundary conditions: For tractions  $\overline{\mathbf{t}}$  imposed on the portion of the surface of the body  $\partial B_t$ :

$$n_i \sigma_{ij} = t_j = \bar{t}_j \tag{4}$$

- Displacement or essential boundary conditions: For displacements  $\bar{\mathbf{u}}$  imposed on the portion of the surface of the body  $\partial B_u$ , this includes the supports for which we have  $\bar{\mathbf{u}} = \mathbf{0}$ :

$$u_i = \bar{u}_i \tag{5}$$

One can prove existence and uniqueness of the solution (the fields:  $u_i(x_j)$ ,  $\epsilon_{ij}(x_k)$ ,  $\sigma_{ij}(x_k)$ ) in B.