16.21 Techniques of Structural Analysis and Design Spring 2005 Unit \#4 - Thermodynamics Principles

Raúl Radovitzky

February 22, 2005

First Law of Thermodynamics

$$
\begin{equation*}
\frac{d}{d t}(K+U)=P+H \tag{1}
\end{equation*}
$$

where:

- K : kinetic energy
- U : internal energy
- P : Power of external forces
- H : hear exchange per unit time

$$
\begin{gather*}
K=\frac{1}{2} \int_{V} \rho \frac{\partial \mathbf{u}}{\partial t} \cdot \frac{\partial \mathbf{u}}{\partial t} d V=\frac{1}{2} \int_{V} \rho \frac{\partial u_{i}}{\partial t} \frac{\partial u_{i}}{\partial t} d V \tag{2}\\
U=\int_{V} \rho \widehat{U}_{0} d V=\int_{V} U_{0} d V \tag{3}
\end{gather*}
$$

where \widehat{U}_{0}, U_{0} are the internal energy densities per unit mass and per unit volume, respectively.

$$
\begin{equation*}
P=\int_{V} \mathbf{f} \cdot \frac{\partial \mathbf{u}}{\partial t} d V+\int_{S} \mathbf{t} \cdot \frac{\partial \mathbf{u}}{\partial t} d S \tag{4}
\end{equation*}
$$

In components:

$$
\begin{equation*}
P=\int_{V} f_{i} \frac{\partial u_{i}}{\partial t} d V+\int_{S} t_{i} \frac{\partial u_{i}}{\partial t} d S \tag{5}
\end{equation*}
$$

Replacing $t_{i}=n_{j} \sigma j i$ in this expression:

$$
\begin{equation*}
P=\int_{V} f_{i} \frac{\partial u_{i}}{\partial t} d V+\int_{S} n_{j} \sigma j i \frac{\partial u_{i}}{\partial t} d S \tag{6}
\end{equation*}
$$

Using Gauss' Theorem:

$$
\begin{align*}
& P=\int_{V} f_{i} \frac{\partial u_{i}}{\partial t} d V+\int_{V} \frac{\partial}{\partial x_{j}}\left(\sigma_{j i} \frac{\partial u_{i}}{\partial t}\right) d V \\
&=\int_{V}[\underbrace{[(\text { why? })}_{\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}} \frac{\partial \sigma_{j i}}{\partial x_{j}}+f_{i}) \tag{7}\\
& \frac{\partial u_{i}}{\partial t}+\sigma_{j i} \underbrace{\frac{\partial u_{i}}{\partial t}}_{\frac{\partial}{\partial x_{j}} \frac{\partial u_{i}}{\partial t}} d V \\
&=\int_{V}(\underbrace{\frac{\partial}{\partial t}\left(\frac{\partial u_{i}}{\partial t}\right)^{2}}_{\frac{\partial}{2} \frac{\partial^{2} u_{i}}{\partial t^{2}} \frac{\partial u_{i}}{\partial t}}+\underbrace{\sigma_{j i} \frac{\partial}{\partial t} \frac{\partial u_{i}}{\partial x_{j}}}_{\sigma_{j i} \frac{\partial}{\partial t} \epsilon_{j i}}) d V
\end{align*}
$$

Notation:
Time derivatives:

$$
\frac{\partial(~)}{\partial t}=(\cdot)
$$

Examples:

- $\frac{\partial u_{i}}{\partial t}=\dot{u}_{i}, \frac{\partial \mathbf{u}}{\partial t}=\dot{\mathbf{u}}$
- $\frac{\partial^{2} u_{i}}{\partial t^{2}}=\ddot{u}_{i}$
- $\frac{\partial \epsilon_{i j}}{\partial t}=\dot{\epsilon}_{i j}$

Spatial derivatives:

$$
\frac{\partial(\quad)}{\partial x_{i}}=(\quad)_{, i}
$$

Examples:

- $\frac{\partial \sigma_{j i}}{\partial x_{j}}=\sigma_{j i, j}$

With this notation, the power of the external forces can be rewritten as:

$$
\begin{equation*}
P=\frac{d}{d t} \underbrace{\int_{V} \frac{1}{2} \rho \frac{\partial u_{i}}{\partial t} \frac{\partial u_{i}}{\partial t} d V}_{I V}+\underbrace{\int_{V} \sigma_{j i} \dot{\epsilon}_{j i} d V} \tag{8}
\end{equation*}
$$

where the " $\rho d V$ " inside the first integral was included inside the time derivative since it is a constant due to conservation of mass. We conclude that part of the power of the external forces goes into changing the kinetic energy of the material and the rest into deforming the material. We call the latter the deformation power and it represents the rate at which the stresses do work on the deforming material.

Replacing in the first law, equation (1):

$$
\begin{equation*}
\frac{d}{d t}(K+U)=\frac{d}{d t}(K)+\int_{V} \sigma_{j i} \dot{\epsilon}_{j i} d V+H \tag{9}
\end{equation*}
$$

After canceling the kinetic energy from both sides, the first law expresses the fact that the internal energy of a deforming material can be changed either by heating or by deforming the material:

$$
\begin{equation*}
\frac{d U}{d t}=\frac{d}{d t} \int_{V} \rho \widehat{U}_{0} d V=\int_{V} \sigma_{j i} \dot{\epsilon}_{j i} d V+H \tag{10}
\end{equation*}
$$

In the isothermal case $(H=0)$:

$$
\begin{equation*}
\int_{V}\left(\rho \frac{\partial \widehat{U}_{0}}{\partial t}-\sigma_{i j} \dot{\epsilon}_{i j}\right) d V=0 \tag{11}
\end{equation*}
$$

or, in local form:

$$
\begin{equation*}
\rho \frac{\partial \widehat{U}_{0}}{\partial t}=\sigma_{i j} \dot{\epsilon}_{i j} \tag{12}
\end{equation*}
$$

In ideal elasticity, we assume that all the work of deformation is converted into internal energy, i.e., the internal energy density is a state function of the deformation:

$$
\begin{equation*}
\widehat{U}_{0}=\widehat{U}_{0}\left(\epsilon_{i j}\right) \tag{13}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\frac{\partial \widehat{U}_{0}}{\partial t}=\frac{\partial \widehat{U}_{0}}{\partial \epsilon_{i j}} \dot{\epsilon}_{i j} \tag{14}
\end{equation*}
$$

Replace in first law, equation (12:

$$
\begin{gather*}
\rho \frac{\partial \widehat{U}_{0}}{\partial \epsilon_{i j}} \dot{\epsilon}_{i j}=\sigma_{i j} \dot{\epsilon}_{i j} \Rightarrow \tag{15}\\
\rho \frac{\partial \widehat{U}_{0}}{\partial \epsilon_{i j}}=\sigma_{i j} \tag{16}
\end{gather*}
$$

i.e., the stresses derive from a potential.

