16.21 Techniques of Structural Analysis and Design
 Spring 2005
 Unit \#3 - Kinematics of deformation

Raúl Radovitzky
February 9, 2005

Figure 1: Kinematics of deformable bodies
Deformation described by deformation mapping:

$$
\begin{equation*}
\mathrm{x}^{\prime}=\varphi(\mathrm{x})=\mathrm{x}+\mathbf{u} \tag{1}
\end{equation*}
$$

We seek to characterize the local state of deformation of the material in a neighborhood of a point P. Consider two points P and Q in the undeformed:

$$
\begin{gather*}
P: \mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}=x_{i} \mathbf{e}_{i} \tag{2}\\
Q: \mathbf{x}+\mathbf{d x}=\left(x_{i}+d x_{i}\right) \mathbf{e}_{i} \tag{3}
\end{gather*}
$$

and deformed

$$
\begin{gather*}
P^{\prime}: \mathbf{x}^{\prime}=\varphi_{1}(\mathbf{x}) \mathbf{e}_{1}+\varphi_{2}(\mathbf{x}) \mathbf{e}_{2}+\varphi_{3}(\mathbf{x}) \mathbf{e}_{3}=\varphi_{i}(\mathbf{x}) \mathbf{e}_{i} \tag{4}\\
Q^{\prime}: \mathbf{x}^{\prime}+\mathbf{d x ^ { \prime }}=\left(\varphi_{i}(\mathbf{x})+d \varphi_{i}\right) \mathbf{e}_{i} \tag{5}
\end{gather*}
$$

configurations. In this expression,

$$
\begin{equation*}
\mathbf{d x}^{\prime}=d \varphi_{i} \mathbf{e}_{i} \tag{6}
\end{equation*}
$$

Expressing the differentials $d \varphi_{i}$ in terms of the partial derivatives of the functions $\varphi_{i}\left(x_{j} \mathbf{e}_{j}\right)$:

$$
\begin{equation*}
d \varphi_{1}=\frac{\partial \varphi_{1}}{\partial x_{1}} d x_{1}+\frac{\partial \varphi_{1}}{\partial x_{2}} d x_{2}+\frac{\partial \varphi_{1}}{\partial x_{3}} d x_{3} \tag{7}
\end{equation*}
$$

and similarly for $d \varphi_{2}, d \varphi_{3}$, in index notation:

$$
\begin{equation*}
d \varphi_{i}=\frac{\partial \varphi_{i}}{\partial x_{j}} d x_{j} \tag{8}
\end{equation*}
$$

Replacing in equation (5):

$$
\begin{align*}
Q^{\prime}: \mathbf{x}^{\prime}+\mathbf{d} \mathbf{x}^{\prime} & =\left(\varphi_{i}+\frac{\partial \varphi_{i}}{\partial x_{j}} d x_{j}\right) \mathbf{e}_{i} \tag{9}\\
\mathbf{d x}_{i}^{\prime} & =\frac{\partial \varphi_{i}}{\partial x_{j}} d x_{j} \mathbf{e}_{i} \tag{10}
\end{align*}
$$

We now try to compute the change in length of the segment $\overrightarrow{P Q}$ which deformed into segment $\overrightarrow{P^{\prime} Q^{\prime}}$. Undeformed length (to the square):

$$
\begin{equation*}
d s^{2}=\|\mathbf{d x}\|^{2}=\mathbf{d x} \cdot \mathbf{d x}=d x_{i} d x_{i} \tag{11}
\end{equation*}
$$

Deformed length (to the square):

$$
\begin{equation*}
\left(d s^{\prime}\right)^{2}=\left\|\mathbf{d x}^{\prime}\right\|^{2}=\mathbf{d x}^{\prime} \cdot \mathbf{d} \mathbf{x}^{\prime}=\frac{\partial \varphi_{i}}{\partial x_{j}} d x_{j} \frac{\partial \varphi_{i}}{\partial x_{k}} d x_{k} \tag{12}
\end{equation*}
$$

The change in length of segment $\overrightarrow{P Q}$ is then given by the difference between equations (12) and (11):

$$
\begin{equation*}
\left(d s^{\prime}\right)^{2}-d s^{2}=\frac{\partial \varphi_{i}}{\partial x_{j}} d x_{j} \frac{\partial \varphi_{i}}{\partial x_{k}} d x_{k}-d x_{i} d x_{i} \tag{13}
\end{equation*}
$$

We want to extract as common factor the differentials. To this end we observe that:

$$
\begin{equation*}
d x_{i} d x_{i}=d x_{j} d x_{k} \delta_{j k} \tag{14}
\end{equation*}
$$

Then:

$$
\begin{align*}
\left(d s^{\prime}\right)^{2}-d s^{2} & =\frac{\partial \varphi_{i}}{\partial x_{j}} d x_{j} \frac{\partial \varphi_{i}}{\partial x_{k}} d x_{k}-d x_{j} d x_{k} \delta_{j k} \\
& =\underbrace{\left(\frac{\partial \varphi_{i}}{\partial x_{j}} \frac{\partial \varphi_{i}}{\partial x_{k}}-\delta_{j k}\right)}_{2 \epsilon_{j k}: \text { Green-Lagrange strain tensor }} d x_{j} d x_{k} \tag{15}
\end{align*}
$$

Assume that the deformation mapping $\varphi(\mathbf{x})$ has the form:

$$
\begin{equation*}
\varphi(\mathbf{x})=\mathbf{x}+\mathbf{u} \tag{16}
\end{equation*}
$$

where \mathbf{u} is the displacement field. Then,

$$
\begin{equation*}
\frac{\partial \varphi_{i}}{\partial x_{j}}=\frac{\partial x_{i}}{\partial x_{j}}+\frac{\partial u_{i}}{\partial x_{j}}=\delta_{i j}+\frac{\partial u_{i}}{\partial x_{j}} \tag{17}
\end{equation*}
$$

and the Green-Lagrange strain tensor becomes:

$$
\begin{align*}
2 \epsilon_{i j} & =\left(\delta_{m i}+\frac{\partial u_{m}}{\partial x_{i}}\right)\left(\delta_{m j}+\frac{\partial u_{m}}{\partial x_{j}}\right)-\delta_{i j} \\
& =\delta_{i j}+\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial x_{j}}-\delta_{i j} \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\text { Green-Lagrange strain tensor : } \epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial x_{j}}\right) \tag{19}
\end{equation*}
$$

When the absolute values of the derivatives of the displacement field are much smaller than 1, their products (nonlinear part of the strain) are even smaller and we'll neglect them. We will make this assumption throughout this course (See accompanying Mathematica notebook evaluating the limits of this assumption). Mathematically:

$$
\begin{equation*}
\left\|\frac{\partial u_{i}}{\partial x_{j}}\right\| \ll 1 \Rightarrow \frac{\partial u_{m}}{\partial x_{i}} \frac{\partial u_{m}}{\partial x_{j}} \sim 0 \tag{20}
\end{equation*}
$$

We will define the linear part of the Green-Lagrange strain tensor as the small strain tensor:

$$
\begin{equation*}
\epsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{21}
\end{equation*}
$$

Transformation of strain components

Given: $\epsilon_{i j}, \mathbf{e}_{i}$ and a new basis $\tilde{\mathbf{e}}_{k}$, determine the components of strain in the new basis $\tilde{\epsilon}_{k l}$

$$
\begin{equation*}
\tilde{\epsilon}_{i j}=\frac{1}{2}\left(\frac{\partial \tilde{u}_{i}}{\partial \tilde{x}_{j}}+\frac{\partial \tilde{u}_{j}}{\partial \tilde{x}_{i}}\right) \tag{22}
\end{equation*}
$$

We want to express the expressions with tilde on the right-hand side with their non-tilde counterparts. Start by applying the chain rule of differentiation:

$$
\begin{equation*}
\frac{\partial \tilde{u}_{i}}{\partial \tilde{x}_{j}}=\frac{\partial \tilde{u}_{i}}{\partial x_{k}} \frac{\partial x_{k}}{\partial \tilde{x}_{j}} \tag{23}
\end{equation*}
$$

Transform the displacement components:

$$
\begin{gather*}
\mathbf{u}=\tilde{u}_{m} \tilde{\mathbf{e}}_{m}=u_{l} \mathbf{e}_{l} \tag{24}\\
\tilde{u}_{m}\left(\tilde{\mathbf{e}}_{m} \cdot \tilde{\mathbf{e}}_{i}\right)=u_{l}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right) \tag{25}\\
\tilde{u}_{m} \delta_{m i}=u_{l}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right) \tag{26}\\
\tilde{u}_{i}=u_{l}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right) \tag{27}
\end{gather*}
$$

take the derivative of \tilde{u}_{i} with respect to x_{k}, as required by equation (23):

$$
\begin{equation*}
\frac{\partial \tilde{u}_{i}}{\partial x_{k}}=\frac{\partial u_{l}}{\partial x_{k}}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right) \tag{28}
\end{equation*}
$$

and take the derivative of the reverse transformation of the components of the position vector \mathbf{x} :

$$
\begin{gather*}
\mathbf{x}=x_{j} \mathbf{e}_{j}=\tilde{x}_{k} \tilde{\mathbf{e}}_{k} \tag{29}\\
x_{j}\left(\mathbf{e}_{j} \cdot \mathbf{e}_{i}\right)=\tilde{x}_{k}\left(\tilde{\mathbf{e}}_{k} \cdot \mathbf{e}_{i}\right) \tag{30}\\
x_{j} \delta_{j i}=\tilde{x}_{k}\left(\tilde{\mathbf{e}}_{k} \cdot \mathbf{e}_{i}\right) \tag{31}\\
x_{i}=\tilde{x}_{k}\left(\tilde{\mathbf{e}}_{k} \cdot \mathbf{e}_{i}\right) \tag{32}\\
\frac{\partial x_{i}}{\partial \tilde{x}_{j}}=\frac{\partial \tilde{x}_{k}}{\partial \tilde{x}_{j}}\left(\tilde{\mathbf{e}}_{k} \cdot \mathbf{e}_{i}\right)=\delta_{k j}\left(\tilde{\mathbf{e}}_{k} \cdot \mathbf{e}_{i}\right)=\left(\tilde{\mathbf{e}}_{j} \cdot \mathbf{e}_{i}\right) \tag{33}
\end{gather*}
$$

Replacing equations (28) and (33) in (23):

$$
\begin{equation*}
\frac{\partial \tilde{u}_{i}}{\partial \tilde{x}_{j}}=\frac{\partial \tilde{u}_{i}}{\partial x_{k}} \frac{\partial x_{k}}{\partial \tilde{x}_{j}}=\frac{\partial u_{l}}{\partial x_{k}}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right)\left(\tilde{\mathbf{e}}_{j} \cdot \mathbf{e}_{k}\right) \tag{34}
\end{equation*}
$$

Replacing in equation (22):

$$
\begin{equation*}
\tilde{\epsilon}_{i j}=\frac{1}{2}\left[\frac{\partial u_{l}}{\partial x_{k}}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right)\left(\tilde{\mathbf{e}}_{j} \cdot \mathbf{e}_{k}\right)+\frac{\partial u_{l}}{\partial x_{k}}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{j}\right)\left(\tilde{\mathbf{e}}_{i} \cdot \mathbf{e}_{k}\right)\right] \tag{35}
\end{equation*}
$$

Exchange indices l and k in second term:

$$
\begin{align*}
\tilde{\epsilon}_{i j} & =\frac{1}{2}\left[\frac{\partial u_{l}}{\partial x_{k}}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right)\left(\tilde{\mathbf{e}}_{j} \cdot \mathbf{e}_{k}\right)+\frac{\partial u_{k}}{\partial x_{l}}\left(\mathbf{e}_{k} \cdot \tilde{\mathbf{e}}_{j}\right)\left(\tilde{\mathbf{e}}_{i} \cdot \mathbf{e}_{l}\right)\right] \\
& =\frac{1}{2}\left(\frac{\partial u_{l}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{l}}\right)\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right)\left(\tilde{\mathbf{e}}_{j} \cdot \mathbf{e}_{k}\right) \tag{36}
\end{align*}
$$

Or, finally:

$$
\begin{equation*}
\tilde{\epsilon}_{i j}=\epsilon_{l k}\left(\mathbf{e}_{l} \cdot \tilde{\mathbf{e}}_{i}\right)\left(\tilde{\mathbf{e}}_{j} \cdot \mathbf{e}_{k}\right) \tag{37}
\end{equation*}
$$

Compatibility of strains

Given displacement field \mathbf{u}, expression (21) allows to compute the strains components $\epsilon_{i j}$. How does one answer the reverse question? Note analogy with potential-gradient field. Restrict the analysis to two dimensions:

$$
\begin{equation*}
\epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}, \quad \epsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}, \quad 2 \epsilon_{12}=\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}} \tag{38}
\end{equation*}
$$

Differentiate the strain components as follows:

$$
\begin{align*}
\frac{\partial^{2}}{\partial x_{1} \partial x_{2}}\left(2 \epsilon_{12}\right) & =\frac{\partial^{3} u_{1}}{\partial x_{1} \partial x_{2}^{2}}+\frac{\partial^{3} u_{2}}{\partial x_{1}^{2} \partial x_{2}} \tag{39}\\
\frac{\partial^{2} \epsilon_{11}}{\partial x_{2}^{2}} & =\frac{\partial^{3} u_{1}}{\partial x_{1} \partial x_{2}^{2}} \tag{40}\\
\frac{\partial^{2} \epsilon_{22}}{\partial x_{1}^{2}} & =\frac{\partial^{3} u_{2}}{\partial x_{2} \partial x_{1}^{2}} \tag{41}
\end{align*}
$$

and conclude that:

$$
\begin{equation*}
2 \frac{\partial^{2} \epsilon_{12}}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} \epsilon_{11}}{\partial x_{2}^{2}}+\frac{\partial^{2} \epsilon_{22}}{\partial x_{1}^{2}} \tag{42}
\end{equation*}
$$

