
16.21 Techniques of Structural Analysis and

Design


Spring 2005

Unit #2  Stress and Momentum balance
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Stress at a point 

We are going to consider the forces exerted on a material. These can be 
external or internal. External forces come in two flavors: body forces (given 
per unit mass or volume) and surface forces (given per unit area). If we cut a 
body of material in equilibrium under a set of external forces along a plane, 
as shown in Fig.1, and consider one side of it, we draw two conclusions: 1) 
the equilibrium provided by the loads from the side taken out is provided by 
a set of forces that are distributed among the material particles adjacent to 
the cut plane and that should provide an equivalent set of forces to the ones 
loading the part taken out, 2) these forces can now be considered as external 
surface forces acting on the part of material under consideration. 

The stress vector at a point on ΔS is defined as: 

f 
t = lim (1) 

ΔS 0 ΔS→

If the cut had gone through the same point under consideration but along a 
plane with a different normal, the stress vector t would have been different. 
Let’s consider the three stress vectors t(i) acting on the planes normal to the 
coordinate axes. Let’s also decompose each t(i) in its three components in 
the coordinate system ei (this can be done for any vector) as (see Fig.2): 

t(i) = σijej (2) 
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Figure 1: Surface force f on area ΔS of the cross section by plane whose 
normal is n 

σij is the component of the stress vector t(i) along the ej direction. 

Stress tensor 

We could keep analyzing different planes passing through the point with 
different normals and, therefore, different stress vectors t(n) and one might 
wonder if there is any relation among them or if they are all independent. The 
answer to this question is given by invoking equilibrium on the (shrinking) 
tetrahedron of material of Fig.3. The area of the faces of the tetrahedron are 
ΔS1, ΔS2, ΔS3 and ΔS. The stress vectors on planes with reversed normals 
t(−ei) have been replaced with −t(i) using Newton’s third law of action 
and reaction (which is in fact derivable from equilibrium): t(−n) = −t(n). 
Enforcing equilibrium we have: 

t(n)ΔS − t(1)ΔS1 − t(2)ΔS2 − t(3)ΔS3 = 0 (3) 

where ΔV is the volume of the tetrahedron and f is the body force per 
unit volume. The following relation: ΔSni = ΔSi derived in the following 
mathematical aside: 

By virtue of Green’s Theorem: 

�φdV = nφdS 
V S 
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Figure 2: Stress components
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Figure 3: Cauchy’s tetrahedron representing the equilibrium of a tetrahedron 
shrinking to a point 
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applied to the function φ = 1, we get 

0 = ndS 
S 

which applied to our tetrahedron gives: 

0 = ΔSn − ΔS1e1 − ΔS2e2 − ΔS3e3 

If we take the scalar product of this equation with ei, we obtain: 

ΔS(n ei) = ΔSi· 

or 
ΔSi = ΔSni 

can then be replaced in equation 3 to obtain: 

e3)t
(3)ΔS t(n) − (n e1)t

(1) + (n e2)t
(2) + (n = 0· · · 

or 
e1t

(1) + e2t
(2) + e3t

(3)t(n) = n (4) · 

The factor in parenthesis is the definition of the Cauchy stress tensor σ: 

e1t
(1) + e2t

(2) + e3t
(3) = eit

(i)σ = (5) 

Note it is a tensorial expression (independent of the vector and tensor com
ponents in a particular coordinate system). To obtain the tensorial com
ponenents in our rectangular system we replace the expressions of t(i) from 
Eqn.2 

σ = eiσijej (6) 

Replacing in Eqn.4: 
t(n) = n · σ (7) 

or: 

t(n) = n · σijeiej = σij 

� 
n · ei 

� 
ej = 

� 
σijni 

� 
ej (8) 

tj = σijni (9) 
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Transformation of stress components 

Consider a different system of cartesian coordinates e�i. We can express our 
tensor in either one: 

σ = σklekel = σ� e� e� (10) mn m n 

We would like to relate the stress components in the two systems. To this 
end, we take the scalar product of (10) with e� and e�j:i 

e�i σ e�j = σkl e
�
i el = σ� mnδimδnj = σ�mn e

�
i em

� e� e�j = σ� ijn ·· · · ek · e�j · 

or 
σ� (11) ij = σkl e

�
i el· ek · e�j 

The factors in parenthesis are the cosine directors of the angles between the 
original and primed coordinate axes. 

Principal stresses and directions 

Given the components of the stress tensor in a given coordinate system, the 
determination of the maximum normal and shear stresses is critical for the 
design of structures. The normal and shear stress components on a plane 
with normal n are given by: 

tN = t(n) n· 
= σkinkni 

tS = �t(n)�2 − t2 N 

It is obvious from these equations that the normal component achieves its 
maximum tN = �t(n)� when the shear components are zero. In this case: 

t(n) = n σ = λn = λIn· 

or in components: 

σkink = λni 

σkink = λδkink (12) 

σki − λδki nk = 0 
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which means that the principal stresses are obtained by solving the previous 
eigenvalue problem, the principal directions are the eigenvectors of the prob
lem. The eigenvalues λ are obtained by noticing that the last identity can be 
satisfied for nontrivial n only if the factor is singular, i.e., if its determinant 
vanishes:


= 0

σ11 − λ σ12 σ13 

σ21 σ22 − λ σ23 

σ32σ31 σ33 − λ 

which leads to the characteristic equation : 

−λ3 + I1λ
2 − I2λ + I3 = 0 

where: 

I1 = σii = σ11 + σ22 + σ33 (13) 

1 
σ2 

12 + σ2 
3123 + σ2I2 = σiiσjj − σijσji = σ11σ22 + σ22σ33 + σ33σ11 −

2 
(14) 

I3 = det[σ] = �σij� (15) 

are called the stress invariants because they do not depend on the coordinate 
system of choice. 

Linear and angular momentum balance 

We are going to derive the equations of momentum balance in integral form, 
since this is the formulation that is more aligned with our “integral” approach 
in this course. We start from the definition of linear and angular momentum. 
For an element of material at position x of volume dV , density ρ, mass ρdV 
which remains constant, moving at a velocity v, the linear momentum is 
ρvdV and the angular momentum x × (ρvdV ). The total momenta of the 
body are obtained by integration over the volume as: 

ρvdV and x × ρvdV 
V V 

respectively. The principle of conservation of linear momentum states that 
the rate of change of linear momentum is equal to the sum of all the external 
forces acting on the body: � � � 

D 

Dt V 

ρvdV = 
V 

fdV + 
S 

tdS (16) 
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where D is the total derivative. The lhs can be expanded as:
Dt � � � 

D D ∂v 

Dt V 

ρvdV = 
V Dt

(ρdV )v + 
V 

ρ 
∂t 

dV 

Dbut 
Dt

(ρdV ) = 0 from conservation of mass, so the principle reads: 

∂v 
ρ dV = fdV + tdS (17) 

∂t VV S 

Now, using what we’ve learned about the tractions and their relation to the 
stress tensor: 

∂v 
ρ dV = fdV + n σdS (18) 

∂t V 

·
V S 

This is the linear momentum balance equation in integral form. We can 
replace the surface integral with a volume integral with the aid of the diver
gence theorem: 

n σdS = � · σdV·
S V 

and then (18) becomes: 

∂v 
ρ dV = 0 

∂t 
− f −� · σ 

V 

Since this principle applies to an arbitrary volume of material, the integrand 
must vanish: 

∂v 
ρ = 0 (19) 

∂t 
− f −� · σ 

This is the linear momentum balance equation in differential form. In com
ponents: 

∂vi
σji,j + fi = ρ 

∂t 

Angular momentum balance and the symmetry of the 
stress tensor 

The principle of conservation of angular momentum states that the rate of 
change of angular momentum is equal to the sum of the moment of all the 
external forces acting on the body: 

D 
ρx × vdV = x × fdV + x × tdS (20) 

Dt V V S 
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It can be conveniently written as � � � � � ∂vj ∂vi � 
xitj − xjti dS + xifj − xjfi dV = xi dV 

∂t 
− xj 

∂t S V V 

Using ti = σkink, the divergence theorem and (19), this expression leads to 
(see homework problem): 

(σij − σji)dV = 0 
V 

which applies to an arbitrary volume V , and therefore, can only be satisfied 
if the integrand vanishes. This implies: 

(21) σij = σji 
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