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Principle of minimum potential energy 

The principle of virtual displacements applies regardless of the constitutive 
law. Restrict attention to elastic materials (possibly nonlinear). Start from 
the PVD: 

¯ ¯ u/¯σij �̄ijdV = tiuidS + fiuidV, ∀¯ u = 0 on Su (1) 
V S V 

Replacing the expression for the stresses for elastic materials: 

∂U0
σij = 

∂�ij 

and assuming that the virtual displacement field is a variation of the equili
brated displacement field u = δu, ¯¯ �ij = δ�ij. 

∂U0 
δ�ij dV = tiδuidS + fiδuidV 

V ∂�ij V� �� � S 
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The expression over the brace is the variation of the strain energy density 
δU0: 

∂U0
δU0 = δ�ij

∂�ij 

Using the properties of calculus of variations δ () = δ(): � � �� � � 
δU0dV = δ U0dV = δU = δ tiuidS + fiuidV = δ(−V ) 

S V 

where V is the potential of the external loads. Therefore: 

δΠ = δ(U + V ) = 0 

which is known as the Principle of minimum potential energy (PMPE).

Let’s take the reverse path. Starting from the potential energy:
� � � 

1 
Π(ui) = 

V 2 
Cijkl�kl�ijdV − 

S 

tiuidS − 
V 

fiuidV 

we would like to apply our tools of calculus of variations to find the 
extrema of Π: 

1 
δui

Π = 0 = Cijkl(δ�kl�ij + �klδ�ij)dV − tiδuidS − fiδuidV 
V 2 S V 

and, by symmetry of Cijkl: 

Cijkl�klδ�ijdV = tiδuidS + fiδuidV 
V S V 

Note that this is the expression of the Principle of Virtual Displacements 
applied to a linear elastic material. 

In fact the expression of the PMPE we derived by setting the variations 
of Π = 0 only says that Π is stationary with respect to variations in the 
displacement field when the body is in equilibrium. 

We can prove that it is indeed a minimum in the case of a linear elastic 
1material: U0 = 
2
Cijkl�kl. We want to show: 

Π(v) ≥ Π(u), ∀v 
Π(v) = Π(u) ⇔ v = u 
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Consider ū = u + δu: 

1

Π(u + δu) = Cijkl(�ij + δ�ij)(�kl + δ�kl) dV 

2
V
� � 
ti(ui + δui)dS − Fi(ui + δui)dV
− 

S � V
 � 
1 1


=Π(u)+ 2� Cijkl�ijδ�kldV + Cijklδ�ijδ�kldV 
V � 2 2
� � V 

tiδuidS − fiδuidV 
V


− 
S 

The second, fourth and fifth term disappear after invoking the PVD and we 
are left with: 

1

Π(u + δu) = Π(u) + Cijklδ�ijδ�kldV 

2
V


The integral is always ≥ 0, since Cijkl is positive definite. Therefore: 

Π(u + δu) = Π(u) + a, a ≥ 0, a = 0 δu = 0⇔ 

and 

Π(v) ≥ Π(u), ∀v 
Π(v) = Π(u) ⇔ v = u 

as sought. 
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Castigliano’s First theorem


Given a body in equilibrium under the action of N concentrated forces 
FI . The potential energy of the external forces is given by: 

N

V = FIuI− 
I=1 

where the uI are the values of the displacement field at the point of applica
tion of the forces FI . Imagine that somehow we can express the strain energy 
as a function of the uI , i.e.: 

U = U(u1, u2, . . . , uN) = U(uI) 

Then: 

N

Π = Π(uI) = U(uI) + V = U(uI)− FIuI 

I=1 
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Invoking the PMPE: 

N
∂U � ∂uI

δΠ = 0 = δuI − FI δuJ
∂uI ∂uJ

I=1 ���� 
N

∂U � 
= δuI − FIδIJδuJ

∂uI 
I=1 

N
∂U � 

= δuI − FIδuI
∂uI 

I=1 

∂U 
= − FI δuI

∂uI 

∂U ∀ δuI FI = ⇔ 
∂uI 

Theorem: If the strain energy can be expressed in terms of N displacements 
corresponding to N applied forces, the first derivative of the strain energy 
with respect to displacement uI is the applied force. 

Example: 

(L + u)2 + v2 u 
�I = 

L2 
− 1 ∼ 

L 

(L + u)2 + (L− v)2 

− 1 ∼ 
1 u − v 

�II = 
2L2 2 L 
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� � 1 u �2 1 u − v ��2� 
U = AEL + AE

√
2L 

� � 

2 L 2 L 

Note that we have written U = U(u, v). According to the theorem: 

∂U 
0 = 

∂u 
∂U 

F = 
∂v 

See solution in accompanying mathematica file. 
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