16.21 Techniques of Structural Analysis and Design Spring 2005 Unit #10 - Principle of minimum potential energy and Castigliano's First Theorem

Raúl Radovitzky

April 4, 2005

Principle of minimum potential energy

The principle of virtual displacements applies regardless of the constitutive law. Restrict attention to elastic materials (possibly nonlinear). Start from the PVD:

$$\int_{V} \sigma_{ij} \bar{\epsilon}_{ij} dV = \int_{S} t_i \bar{u}_i dS + \int_{V} f_i \bar{u}_i dV, \ \forall \bar{u} / \bar{u} = 0 \text{ on } S_u$$
(1)

Replacing the expression for the stresses for elastic materials:

$$\sigma_{ij} = \frac{\partial U_0}{\partial \epsilon_{ij}}$$

and assuming that the virtual displacement field is a variation of the equilibrated displacement field $\bar{u} = \delta u$, $\bar{\epsilon}_{ij} = \delta \epsilon_{ij}$.

$$\int_{V} \underbrace{\frac{\partial U_0}{\partial \epsilon_{ij}} \delta \epsilon_{ij}}_{O_{V_i}} dV = \int_{S} t_i \delta u_i dS + \int_{V} f_i \delta u_i dV$$

The expression over the brace is the variation of the strain energy density δU_0 :

$$\delta U_0 = \frac{\partial U_0}{\partial \epsilon_{ij}} \delta \epsilon_{ij}$$

Using the properties of calculus of variations $\delta \int () = \int \delta ()$:

$$\int \delta U_0 dV = \delta \int U_0 dV = \delta U = \delta \left(\int_S t_i u_i dS + \int_V f_i u_i dV \right) = \delta(-V)$$

where V is the potential of the external loads. Therefore:

$$\delta \Pi = \delta (U + V) = 0$$

which is known as the *Principle of minimum potential energy* (PMPE).

Let's take the reverse path. Starting from the potential energy:

$$\Pi(u_i) = \int_V \frac{1}{2} C_{ijkl} \epsilon_{kl} \epsilon_{ij} dV - \int_S t_i u_i dS - \int_V f_i u_i dV$$

we would like to apply our tools of calculus of variations to find the extrema of Π :

$$\delta_{u_i} \Pi = 0 = \int_V \frac{1}{2} C_{ijkl} (\delta \epsilon_{kl} \epsilon_{ij} + \epsilon_{kl} \delta \epsilon_{ij}) dV - \int_S t_i \delta u_i dS - \int_V f_i \delta u_i dV$$

and, by symmetry of C_{ijkl} :

$$\int_{V} C_{ijkl} \epsilon_{kl} \delta \epsilon_{ij} dV = \int_{S} t_i \delta u_i dS + \int_{V} f_i \delta u_i dV$$

Note that this is the expression of the Principle of Virtual Displacements applied to a linear elastic material.

In fact the expression of the PMPE we derived by setting the variations of $\Pi = 0$ only says that Π is stationary with respect to variations in the displacement field when the body is in equilibrium.

We can prove that it is indeed a minimum in the case of a linear elastic material: $U_0 = \frac{1}{2}C_{ijkl}\epsilon_{kl}$. We want to show:

$$\Pi(v) \ge \Pi(u), \ \forall v$$
$$\Pi(v) = \Pi(u) \Leftrightarrow v = u$$

Consider $\bar{u} = u + \delta u$:

$$\begin{split} \Pi(u+\delta u) &= \int_{V} \Big[\frac{1}{2} C_{ijkl} (\epsilon_{ij} + \delta \epsilon_{ij}) (\epsilon_{kl} + \delta \epsilon_{kl}) \Big] dV \\ &- \int_{S} t_{i} (u_{i} + \delta u_{i}) dS - \int_{V} F_{i} (u_{i} + \delta u_{i}) dV \\ &= \Pi(u) + \not 2 \int_{V} \frac{1}{\not 2} C_{ijkl} \epsilon_{ij} \delta \epsilon_{kl} dV + \int_{V} \frac{1}{2} C_{ijkl} \delta \epsilon_{ij} \delta \epsilon_{kl} dV \\ &- \int_{S} t_{i} \delta u_{i} dS - \int_{V} f_{i} \delta u_{i} dV \end{split}$$

The second, fourth and fifth term disappear after invoking the PVD and we are left with:

$$\Pi(u+\delta u) = \Pi(u) + \int_{V} \frac{1}{2} C_{ijkl} \delta \epsilon_{ij} \delta \epsilon_{kl} dV$$

The integral is always ≥ 0 , since C_{ijkl} is positive definite. Therefore:

$$\Pi(u+\delta u) = \Pi(u) + a, \ a \ge 0, \ a = 0 \ \Leftrightarrow \delta u = 0$$

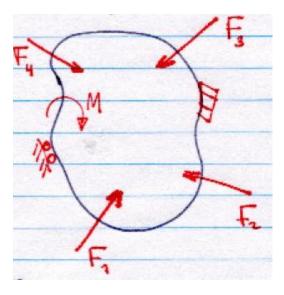
and

$$\Pi(v) \ge \Pi(u), \ \forall v$$

$$\Pi(v) = \Pi(u) \Leftrightarrow v = u$$

as sought.

Castigliano's First theorem



Given a body in equilibrium under the action of N concentrated forces F_I . The potential energy of the external forces is given by:

$$V = -\sum_{I=1}^{N} F_I u_I$$

where the u_I are the values of the displacement field at the point of application of the forces F_I . Imagine that somehow we can express the strain energy as a function of the u_I , i.e.:

$$U = U(u_1, u_2, \ldots, u_N) = U(u_I)$$

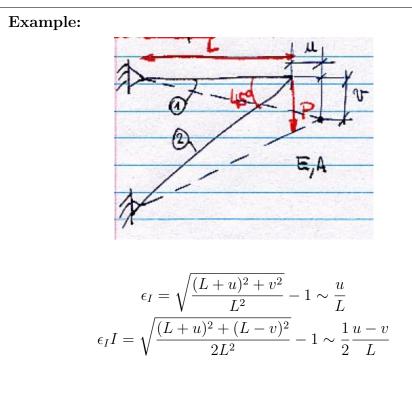
Then:

$$\Pi = \Pi(u_I) = U(u_I) + V = U(u_I) - \sum_{I=1}^{N} F_I u_I$$

Invoking the PMPE:

$$\delta \Pi = 0 = \frac{\partial U}{\partial u_I} \delta u_I - \sum_{I=1}^N F_I \frac{\partial u_I}{\partial u_J} \delta u_J$$
$$= \frac{\partial U}{\partial u_I} \delta u_I - \sum_{I=1}^N F_I \delta_{IJ} \delta u_J$$
$$= \frac{\partial U}{\partial u_I} \delta u_I - \sum_{I=1}^N F_I \delta u_I$$
$$= \left(\frac{\partial U}{\partial u_I} - F_I\right) \delta u_I$$
$$\forall \, \delta u_I \, \Leftrightarrow \overline{F_I} = \frac{\partial U}{\partial u_I}$$

Theorem: If the strain energy can be expressed in terms of N displacements corresponding to N applied forces, the first derivative of the strain energy with respect to displacement u_I is the applied force.



$$U = \frac{1}{2} \left\{ AEL\left(\frac{u}{L}\right)^2 + AE\sqrt{2}L\left[\frac{1}{2}\left(\frac{u-v}{L}\right)\right]^2 \right\}$$

Note that we have written U = U(u, v). According to the theorem:

$$0 = \frac{\partial U}{\partial u}$$
$$F = \frac{\partial U}{\partial v}$$

See solution in accompanying mathematica file.