16.20 HANDOUT \#5
 Fall, 2002
 Stability and Buckling

Bifurcation Buckling and Snap-Through Buckling

BIFURCATION BUCKLING

Perfect Column:

- Governing Equation: $E I \frac{d^{4} w}{d x^{4}}+P \frac{d^{2} w}{d x^{2}}=0$
- Solution: $\quad w=A \sin \sqrt{\frac{P}{E I}} x+B \cos \sqrt{\frac{P}{E I}} x+C+D x$
- Simply supported: $P_{c r}=\frac{n^{2} \pi^{2} E I}{\ell^{2}}$ mode shape: $w=A \sin \frac{n \pi x}{l}$

$$
\text { Euler buckling load: } \quad P_{c r}=\frac{\pi^{2} E I}{l^{2}}
$$

- General Case: $\quad P_{c r}=\frac{c \pi^{2} E I}{l^{2}} \quad \mathrm{c}=$ coefficient of edge fixity
- Various Boundary Conditions
- Simply-supported (pinned)

$$
\left\{\begin{array}{l}
w=0 \\
M=E I \frac{d^{2} w}{d x^{2}}=0
\end{array}\right.
$$

- Fixed end (clamped)

$$
\left\{\begin{array}{l}
w=0 \\
\frac{d w}{d x}=0
\end{array}\right.
$$

- Free end

$$
\left\{\begin{array}{l}
M=E I \frac{d^{2} w}{d x^{2}}=0 \\
S=\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right)=0
\end{array}\right.
$$

- Sliding

$$
\left\{\begin{array}{l}
S=\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right)=0 \\
\frac{d w}{d x}=0
\end{array}\right.
$$

- Free end with axial load

$$
\frac{d w}{d x} \frac{P_{0}}{S}\left\{\begin{array}{l}
M=E I \frac{d^{2} w}{d x^{2}}=0 \\
S=\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right)=-P_{0} \frac{d w}{d x}
\end{array}\right.
$$

- Vertical spring

$$
\left\{\begin{array}{l}
M=E I \frac{d^{2} w}{d x^{2}}=0 \\
S=\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right)=\mathrm{k}_{\mathrm{f}} \mathrm{w}
\end{array}\right.
$$

- Torsional spring

$$
\text { (\$) }\left\{\begin{array}{l}
w=0 \\
M=E I \frac{d^{2} w}{d x^{2}}=-k_{T} \frac{d w}{d x}
\end{array}\right.
$$

- Various Configurations

$c=0.25 \quad 1<c<4$
- Important Definitions
- radius of gyration $=\rho=(I / A)^{1 / 2}$
- slenderness ratio $=L / \rho$
- effective length $=L^{\prime}=\frac{L}{\sqrt{c}}$
- Effects of Initial Imperfections

Governing equation still: $\quad E I \frac{d^{4} w}{d x^{4}}+P \frac{d^{2} w}{d x^{2}}=0$
--> Boundary Conditions Change: Primary Moment =-eP

$$
w=e\left\{\frac{\left(1-\cos \sqrt{\frac{P}{E I}} l\right)}{\sin \sqrt{\frac{P}{E I}} l} \sin \sqrt{\frac{P}{E I}} x+\cos \sqrt{\frac{P}{E I}} x-1\right\}
$$

$$
\left.\begin{array}{l}
M=E I \frac{d^{2} w}{d x^{2}}=-e P\left\{\frac{\left(1-\cos \sqrt{\frac{P}{E I}} l\right)}{\sin \sqrt{\frac{P}{E I}} l} \sin \sqrt{\frac{P}{E I}} x+\cos \sqrt{\frac{P}{E I}} x\right\} \\
\text { Handout 5-4 }
\end{array}\right\}
$$

BEAM-COLUMN

- Resultant Relations

$$
\begin{aligned}
\frac{d F}{d x} & =-p_{x}-\frac{d}{d x}\left(S \frac{d w}{d x}\right) \approx-p_{\mathrm{x}} \\
\frac{d S}{d x} & =p_{z}+\frac{d}{d x}\left(F \frac{d w}{d x}\right) \\
\frac{d M}{d x} & =S
\end{aligned}
$$

- Governing Equation:

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)-\frac{d}{d x}\left(F \frac{d w}{d x}\right)=p_{z}
$$

- Buckling of Beam-Column:

$$
E I \frac{d^{2} w}{d x^{2}}+P w=M_{\text {primary }}
$$

OTHER ISSUES

- Fracture/Failure via "squashing"

- Progressive Yielding

- Nonuniform Beams

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)+P \frac{d^{2} w}{d x^{2}}=0
$$

- Plates

- Cylinders

- Reinforced Plates

Consider buckling/crippling of elements of stiffness as well as of panels

- Postbuckling

$$
\text { large deformations } \rightarrow \text { curvature }=\frac{d \theta}{d s}=\frac{1}{\sqrt{1-\left(\frac{d w}{d s}\right)^{2}}} \frac{d^{2} w}{d s^{2}}
$$

Basic Equation:

$$
\left[1+\frac{1}{2}\left(\frac{d w}{d s}\right)^{2}+\text { H.O.T. }\right] \frac{d^{2} w}{d s^{2}}+\frac{P}{E I} w=0
$$

Use Galerkin Method (minimize residuals)

