16.20 HANDOUT #3 Fall, 2002 <u>Review of "Basic" Torsion Theory</u>

SOLID CROSS-SECTIONS (St. Venant Theory)

OPEN, THIN-WALLED SECTIONS (Membrane Analogy)

Handout 3-1

MIT - 16.20

Analogy:

Membrane		Torsion
w	→	φ
p _i	→	- k
Ν	→	$\frac{1}{2G}$
$\frac{\partial W}{\partial x}$	→	$\frac{\partial \phi}{\partial x} = \sigma_{zy}$
$\frac{\partial \mathbf{w}}{\partial \mathbf{y}}$	->	$\frac{\partial \phi}{\partial y} = -\sigma_{zx}$
Volume = \iint wdxdy	->	$-\frac{T}{2}$

Apply to a narrow rectangular cross-section

apply to:

CLOSED, THICK-WALLED SECTIONS

- $\phi = C_1$ on one boundary
- $\phi = C_2$ on one boundary

 $\oint \tau ds = 2AGk$ on any closed boundary

THIN-WALLED CLOSED SECTIONS

$$U = \frac{4A}{\oint \frac{ds}{t}}$$

<u>Note</u>: Free-to-warp assumptions violated near end constraints for all torsion problems.