Unit 3
 (Review of) Language of Stress/Strain Analysis

Readings:
B, M, P A.2, A.3, A. 6
Rivello
2.1, 2.2
$\mathrm{T} \& \mathrm{G} \quad$ Ch. 1 (especially 1.7)

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

Recall the definition of stress:
$\sigma=$ stress $=$ "intensity of internal force at a point"
Figure 3.1 Representation of cross-section of a general body

$$
\text { Stress }=\lim _{\Delta A \rightarrow 0}\left(\frac{\Delta F}{\Delta A}\right)
$$

There are two types of stress:

- $\sigma_{n}\left(F_{n}\right)$ 1. Normal (or extensional): act normal to the plane of the element
- $\sigma_{s}\left(F_{s}\right)$ 2. Shear: act in-plane of element
\longrightarrow Sometimes delineated as τ

And recall the definition of strain:
$\varepsilon=$ strain $=$ "percentage deformation of an infinitesimal element"
Figure 3.2 Representation of 1-Dimensional Extension of a body

Again, there are two types of strain:
ε_{n} 1. Normal (or extensional): elongation of element
ε_{s} 2. Shear: angular change of element
\longrightarrow Sometimes delineated as γ
Figure 3.3 Illustration of Shear Deformation

Since stress and strain have components in several directions, we need a notation to represent these (as you learnt initially in Unified)

Several possible

- Tensor (indicial) notation
- Contracted notation
- Engineering notation
- Matrix notation
will review here
and give examples
in recitation

IMPORTANT: Regardless of the notation, the equations and concepts have the same meaning
\Rightarrow learn, be comfortable with, be able to use all notations

Tensor (or Summation) Notation

- "Easy" to write complicated formulae
- "Easy" to mathematically manipulate
- "Elegant", rigorous
- Use for derivations or to succinctly express a set of equations or a long equation

Example: $x_{i}=f_{i j} y_{j}$

- Rules for subscripts

NOTE: index \equiv subscript

- Latin subscripts (m, n, p, q, ...) take on the values $1,2,3$ (3-D)
- Greek subscripts $(\alpha, \beta, \gamma \ldots)$ take on the values 1,2 (2-D)
- When subscripts are repeated on one side of the equation within one term, they are called dummy indices and are to be summed on

Thus:

$$
\mathrm{f}_{\mathrm{ij}} \mathrm{y}_{\mathrm{j}}=\sum_{\mathrm{j}=1}^{3} \mathrm{f}_{\mathrm{ij}} \mathrm{y}_{\mathrm{j}}
$$

But $f_{i j} y_{j}+g_{i} \ldots$ do not sum on i !

- Subscripts which appear only once on the left side of the equation within one term are called free indices and represent a separate equation

Thus:

$$
\begin{aligned}
& x_{i}=\ldots . \\
& \Rightarrow x_{1}=\ldots \\
& x_{2}=\ldots . \\
& x_{3}=\ldots .
\end{aligned}
$$

Key Concept: The letters used for indices have no inherent meaning in and of themselves

Thus: $x_{i}=f_{i j} y_{j}$
is the same as: $\quad x_{r}=f_{r s} y_{s}$ or $x_{j}=f_{j i} y_{i}$

Now apply these concepts for stress/strain analysis:

1. Coordinate System

Generally deal with right-handed rectangular Cartesian: y_{m}

Figure 3.4 Right-handed rectangular Cartesian coordinate system

Note: Normally this is so, but always check definitions in any article, book, report, etc. Key issue is self-consistency, not consistency with a worldwide standard (an official one does not exist!)
2. Deformations/Displacements (3)

Figure 3.5

- $p\left(y_{1}, y_{2}, y_{3}\right)$,
small p
(deformed position)

$$
P\left(Y_{1}, Y_{2}, Y_{3}\right)
$$

Capital P (original position)

$$
u_{m}=p\left(y_{m}\right)-P\left(y_{m}\right)
$$

--> Compare notations

Tensor	Engineering	Direction in Engineering
u_{1}	u	x
u_{2}	v	y
u_{3}	w	z

3. Components of Stress (6)
$\sigma_{m n}$ "Stress Tensor"

2 subscripts \Rightarrow 2nd order tensor

6 independent components

Note: stress tensor is symmetric

$$
\sigma_{\mathrm{mn}}=\sigma_{\mathrm{nm}}
$$

due to equilibrium (moment) considerations
Meaning of subscripts:

stress acts on face
with normal vector in
the m-direction

Figure 3.6 Differential element in rectangular system

--> Compare notations

Tensor	Engineering		
σ_{11}	σ_{x}		
σ_{22}	σ_{y}		
σ_{33}	σ_{z}		
σ_{23}	$\sigma_{y z}$		
σ_{13}	σ_{xz}		
σ_{12}	σ_{xy}		
	$=\tau_{\mathrm{yz}}$		
		$\quad \tau_{\mathrm{xz}} \quad$	
:---			
	\quad	sometimes	
:---			
used for			
shear stresses			

4. Components of Strain (6)
$\varepsilon_{\text {mn }}$ "Strain Tensor"

2 subscripts $\Rightarrow 2$ nd order tensor

6 independent components
Extensional

NOTE (again): strain tensor is symmetric

$$
\varepsilon_{\mathrm{mn}}=\varepsilon_{\mathrm{nm}}
$$

due to geometrical considerations
(from Unified)

Meaning of subscripts not like stress

$$
\varepsilon_{\mathrm{mn}}
$$

$$
\begin{aligned}
& \mathrm{m}=\mathrm{n} \Rightarrow \text { extension along } \mathrm{m} \\
& \mathrm{~m} \neq \mathrm{n} \Rightarrow \text { rotation in } m-n \text { plane }
\end{aligned}
$$

BIG DIFFERENCE for strain tensor:

There is a difference in the shear components of strain between tensor and engineering (unlike for stress).

Figure 3.7 Representation of shearing of a 2-D element

--> total angular change $=\phi_{12}=\varepsilon_{12}+\varepsilon_{21}=\underline{2} \varepsilon_{12}$
(recall that ε_{12} and ε_{21} are the same due to geometrical considerations)
But, engineering shear strain is the total

$$
\text { angle: } \quad \phi_{12}=\varepsilon_{x y}=\gamma_{x y}
$$

--> Compare notations

Tensor	Engineering
ε_{11}	$\varepsilon_{\text {x }}$
ε_{22}	ε_{y}
ε_{33}	$\varepsilon_{\text {z }}$
$2 \varepsilon_{23}=$	$\varepsilon_{y z}$
$2 \varepsilon_{13}=$	$\varepsilon_{x z}$
$2 \varepsilon_{12}=$	$\varepsilon_{x y}$

Thus, factor of 2 will pop up
When we consider the equations of elasticity, the 2 comes out naturally.
(But, remember this "physical" explanation)

When dealing with shear strains, must know if they are tensorial or engineering...DO NOT ASSUME!
5. Body Forces (3)
f_{i} internal forces act along axes
(resolve them in this manner -- can always do that)
--> Compare notations

Tensor	Engineering
f_{1}	f_{x}
f_{2}	f_{y}
f_{3}	f_{z}

6. Elasticity Tensor (? ... will go over later)
$E_{\text {mnpq }}$ relates stress and strain
(we will go over in detail, ... recall introduction in Unified)

Other Notations

Engineering Notation

- One of two most commonly used
- Requires writing out all equations (no "shorthand")
- Easier to see all components when written out fully

Contracted Notation

- Other of two most commonly used
- Requires less writing
- Often used with composites ("reduces" four subscripts on elasticity term to two)
- Meaning of subscripts not as "physical"
- Requires writing out all equations generally (there is contracted "shorthand")
--> subscript changes

Tensor	Engineering	Contracted
11	x	1
22	y	2
33	z	3
23,32	yz	4
13,31	xz	5
12,21	xy	6

--> Meaning of "4, 5, 6" in contracted notation

- Shear component
- Represents axis (x_{n}) "about which" shear rotation takes place via:

Figure 3.8 Example:
Rotation about y_{3}

Unit 3-p. 16

Matrix notation

- "Super" shorthand
- Easy way to represent system of equations
- Especially adaptable with indicial notation
- Very useful in manipulating equations (derivations, etc.)

$$
\begin{aligned}
& \text { Example: } \quad x_{i}=A_{i j} y_{j} \\
& \underset{\sim}{x}=A y \\
& \sim \Rightarrow \text { matrix (as underscore) } \\
& \text { tilde } \\
& \left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right\} \\
& \text { (will see a little of this ... mainly in 16.21) }
\end{aligned}
$$

KEY: Must be able to use various notations. Don't rely on notation, understand concept that is represented.

