Unit 3

(Review of) Language of Stress/Strain Analysis

Readings:

- B, M, P A.2, A.3, A.6
- Rivello 2.1, 2.2
- T & G Ch. 1 (especially 1.7)

Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems

Recall the definition of stress:

 σ = stress = "intensity of internal force at a point"

Figure 3.1 Representation of cross-section of a general body

There are two types of stress:

- $\sigma_n(F_n)$ 1. Normal (or extensional): act normal to the plane of the element
- σ_s (F_s) 2. Shear: act in-plane of element

 \rightarrow Sometimes delineated as τ

And recall the definition of strain:

 ϵ = strain = "percentage deformation of an infinitesimal element"

Figure 3.2 Representation of 1-Dimensional Extension of a body

shear

deformation!

Again, there are two types of strain:

- ε_n 1. Normal (or extensional): elongation of element
- $\epsilon_s\,$ 2. Shear: angular change of element
 - Sometimes delineated as γ

Figure 3.3 Illustration of Shear Deformation

Since stress and strain have components in several directions, we need a notation to represent these (as you learnt initially in Unified)

Several possible

- Tensor (indicial) notation
- Contracted notation
- Engineering notation
- Matrix notation

will review here and give examples in recitation

IMPORTANT: Regardless of the notation, the equations and concepts have the same meaning

⇒ learn, be comfortable with, be able to use all notations

Tensor (or Summation) Notation

- "Easy" to write complicated formulae
- "Easy" to mathematically manipulate
- "Elegant", rigorous
- Use for derivations or to succinctly express a set of equations or a long equation

MIT - 16.20

<u>Example</u>: $x_i = f_{ij} y_j$

• Rules for subscripts

NOTE: index = subscript

- Latin subscripts (m, n, p, q, ...) take on the values 1, 2, 3 (3-D)
- <u>Greek</u> subscripts (α , β , γ ...) take on the values 1, 2 (2-D)
- When subscripts are <u>repeated</u> on one side of the equation <u>within one term</u>, they are called <u>dummy indices</u> and are to be summed on

Thus:

$$f_{ij} y_j = \sum_{j=1}^{3} f_{ij} y_j$$

$$\underline{But} \quad f_{ij} y_j + g_i \dots \text{ do not sum on } i !$$

 Subscripts which appear <u>only once</u> on the left side of the equation <u>within one term</u> are called <u>free indices</u> and represent a separate equation Thus:

 $x_i = \dots$ $\Rightarrow x_1 = \dots$ $x_2 = \dots$ $x_3 = \dots$

> <u>Key Concept</u>: The letters used for indices have no inherent meaning in and of themselves

Thus:
$$x_i = f_{ij} y_j$$

is the same as: $x_r = f_{rs} y_s$ or $x_j = f_{ji} y_i$

Now apply these concepts for stress/strain analysis:

1. Coordinate System

Generally deal with right-handed rectangular Cartesian: y_m

<u>Note</u>: <u>Normally</u> this is so, <u>but</u> always check definitions in any article, book, report, etc. Key issue is self-consistency, not consistency with a worldwide standard (an official one does <u>not</u> exist!)

2. <u>Deformations/Displacements</u> (3)

Figure 3.5

• p(y₁, y₂, y₃), <u>small</u> p (deformed position)

P(Y₁, Y₂, Y₃) <u>*Capital*</u> P (original position)

 $u_m = p(y_m) - P(y_m)$

--> <u>Compare notations</u>

Tensor	Engineering	Direction in Engineering
U ₁	u	x
U_2	V	У
U ₃	W	Z

3. <u>Components of Stress</u> (6)

 σ_{mn} "Stress Tensor"

2 subscripts \Rightarrow 2nd order tensor

6 independent components

 $\sigma_{mn} = \sigma_{nm}$

due to equilibrium (moment) considerations

Figure 3.6 Differential element in rectangular system

--> <u>Compare notations</u>

Tensor	Engineering			
$\sigma_{_{11}}$	σ_x			
$\sigma_{_{22}}$	σ _y			
$\sigma_{_{33}}$	σ _z			
$\sigma_{_{23}}$	σ _{yz}	$= \tau_{yz}$		sometimes
$\sigma_{_{13}}$	σ _{xz}	$= \tau_{xz}$	\geq	used for
$\sigma_{_{12}}$	σ _{xy}	$= \tau_{xy}$		shear stresse

Fall, 2002

4. <u>Components of Strain</u> (6)

 ϵ_{mn} "Strain Tensor"

2 subscripts \Rightarrow 2nd order tensor

6 independent components

Meaning of subscripts *not* like stress

 $\boldsymbol{\epsilon}_{mn}$

- $m = n \Rightarrow$ extension along m
- $m \neq n \Rightarrow$ rotation in m-n plane

BIG DIFFERENCE for strain tensor:

There is a difference in the shear components of strain between tensor and engineering (unlike for stress).

Figure 3.7 Representation of shearing of a 2-D element

--> total angular change = $\phi_{12} = \varepsilon_{12} + \varepsilon_{21} = 2 \varepsilon_{12}$ (recall that ε_{12} and ε_{21} are the same due to geometrical considerations) <u>But</u>, engineering shear strain is the total

angle:
$$\phi_{12} = \varepsilon_{xy} = \gamma_{xy}$$

--> <u>Compare notations</u>

Tensor	Engineering			
8 ₁₁	ε _x			
8 ₂₂	ε _y			
ε ₃₃	ε _z			
$2\epsilon_{_{23}} =$	$\mathbf{\epsilon}_{yz}$	$= \gamma_{yz}$		sometimes
$2\epsilon_{13}$ =	ε _{xz}	$= \gamma_{xz}$	>	[–] used for
$2\epsilon_{12}$ =	ε _{xy}	$= \gamma_{xy}$		shear strains

Thus, factor of 2 will pop up

When we consider the equations of elasticity, the 2 comes out naturally.

(But, remember this "physical" explanation)

When dealing with shear strains, must know if they are tensorial or engineering...<u>DO NOT ASSUME</u>!

- 5. <u>Body Forces</u> (3)
 - f_i internal forces act along axes

(resolve them in this manner -- can always do that)

--> Compare notations

Tensor	Engineering
f ₁	f _x
f_2	f _y
f_{3}	f _z

6. Elasticity Tensor (? ... will go over later)

E_{mnpg} relates stress and strain

(we will go over in detail, ... recall introduction in Unified)

Other Notations

Engineering Notation

- One of two most commonly used
- Requires writing out all equations (no "shorthand")
- Easier to see all components when written out fully

Contracted Notation

- Other of two most commonly used
- Requires less writing
- Often used with composites ("reduces" four subscripts on elasticity term to two)
- Meaning of subscripts not as "physical"
- Requires writing out all equations generally (there is contracted "shorthand")

>	subscript	changes
---	-----------	---------

Tensor	Engineering	Contracted
11	x	1
22	У	2
33	Z	3
23, 32	yz	4
13, 31	xz	5
12, 21	ХУ	6

--> Meaning of "4, 5, 6" in contracted notation

- Shear component
- Represents axis (x_n) "about which" shear rotation takes place via:

Figure 3.8 Example: Rotation about y₃

Matrix notation

- "Super" shorthand
- Easy way to represent system of equations
- Especially adaptable with indicial notation
- Very useful in manipulating equations (derivations, etc.)

<u>KEY</u>: Must be able to use various notations. Don't rely on notation, understand concept that is represented.

Paul A. Lagace © 2001