Unit 23
 Vibration of Continuous Systems

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

The logical extension of discrete mass systems is one of an infinite number of masses. In the limit, this is a continuous system.

Take the generalized beam-column as a generic representation:

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)-\frac{d}{d x}\left(F \frac{d w}{d x}\right)=p_{z} \tag{23-1}
\end{equation*}
$$

Figure 23.1 Representation of generalized beam-column

This considers only static loads. Must add the inertial load(s). Since the concern is in the z-displacement (w):

Inertial load/unit length $=m \ddot{w}$
where: $m(x)=$ mass/unit length

Use per unit length since entire equation is of this form. Thus:

$$
\begin{align*}
& \frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)-\frac{d}{d x}\left(F \frac{d w}{d x}\right)=p_{z}-m \ddot{w} \\
& \text { or: } \\
& \frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)-\frac{d}{d x}\left(F \frac{d w}{d x}\right)+m \ddot{w}=p_{z} \tag{23-3}
\end{align*}
$$

Beam Bending Equation
often, $\mathrm{F}=0$ and this becomes:

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)+m \ddot{w}=p_{z}
$$

--> This is a fourth order differential equation in x
--> Need four boundary conditions
--> This is a second order differential equation in time
--> Need two initial conditions

Notes:

- Could also get via simple beam equations. Change occurs in:

$$
\frac{d S}{d x}=p_{z}-m \ddot{w}
$$

- If consider dynamics along x , must include $m \ddot{u}$ in p_{x} term: $\left(p_{x}-m \ddot{u}\right)$ Use the same approach as in the discrete spring-mass systems:

Free Vibration

Again assume harmonic motion. In a continuous system, there are an infinite number of natural frequencies (eigenvalues) and associated modes (eigenvectors)
so:

$$
w(x, t)=\bar{w}(x) e^{i \omega t}
$$

separable solution spatially (x) and temporally (t)
Consider the homogeneous case ($\mathrm{p}_{\mathrm{z}}=0$) and let there be no axial forces

$$
\left(p_{x}=0 \Rightarrow F=0\right)
$$

So:

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)+m \ddot{w}=0
$$

Also assume that El does not vary with x :

$$
\begin{equation*}
E I \frac{d^{4} w}{d x^{4}}+m \ddot{w}=0 \tag{23-5}
\end{equation*}
$$

Placing the assumed mode in the governing equation:

$$
E I \frac{d^{4} \bar{w}}{d x^{4}} e^{i \omega t}-m \omega^{2} \bar{w} e^{i \omega t}=0
$$

This gives:

$$
\begin{equation*}
E I \frac{d^{4} \bar{w}}{d x^{4}}-m \omega^{2} \bar{w}=0 \tag{23-6}
\end{equation*}
$$

which is now an equation solely in the spatial variable (successful separation of t and x dependencies)
Must now find a solution for $\overline{\mathrm{w}}(\mathrm{x})$ which satisfies the differential equations and the boundary conditions.

Note: the shape and frequency are intimately linked (through equation 23-6)

Can recast equation (23-6) to be:

$$
\begin{equation*}
\frac{d^{4} \bar{w}}{d x^{4}}-\frac{m \omega^{2}}{E I} \bar{w}=0 \tag{23-7}
\end{equation*}
$$

The solution to this homogeneous equation is of the form:

$$
\bar{w}(x)=e^{p x}
$$

Putting this into (23-7) yields

$$
\begin{aligned}
& p^{4} e^{p x}-\frac{m \omega^{2}}{E I} e^{p x}=0 \\
& \Rightarrow \quad p^{4}=\frac{m \omega^{2}}{E I}
\end{aligned}
$$

So this is an eigenvalue problem (spatially). The four roots are:

$$
\mathrm{p}=+\lambda,-\lambda,+\mathrm{i} \lambda,-\mathrm{i} \lambda
$$

where:

$$
\lambda=\left(\frac{m \omega^{2}}{E I}\right)^{1 / 4}
$$

This yields:

$$
\bar{w}(x)=A e^{\lambda x}+B e^{-\lambda x}+C e^{i \lambda x}+D e^{-i \lambda x}
$$

or:

$$
\begin{equation*}
\bar{w}(x)=C_{1} \sinh \lambda x+C_{2} \cosh \lambda x+C_{3} \sin \lambda x+C_{4} \cos \lambda x \tag{23-8}
\end{equation*}
$$

The constants are found by applying the boundary conditions
(4 constants $\Rightarrow 4$ boundary conditions)
Example: Simply-supported beam
Figure 23.2 Representation of simply-supported beam

EI, $m=$ constant with x

Boundary conditions:

$$
\begin{aligned}
& @ \mathrm{x}=0 \\
& @ \mathrm{x}=\ell
\end{aligned} \quad\left\{\begin{array}{l}
\mathrm{w}=0 \\
M=E I \frac{d^{2} w}{d x^{2}}=0
\end{array}\right.
$$

with:

$$
\bar{w}(x)=C_{1} \sinh \lambda x+C_{2} \cosh \lambda x+C_{3} \sin \lambda x+C_{4} \cos \lambda x
$$

Put the resulting four equations in matrix form

$$
\begin{aligned}
& w(0)=0- \\
& \frac{d^{2} w}{d x^{2}}(0)=0- \\
& w(l)=0- \\
& \frac{d^{2} w}{d x^{2}}(l)=0
\end{aligned}\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 \\
\sinh \lambda l & \cosh \lambda l & \sin \lambda l & \cos \lambda l \\
\sinh \lambda l & \cosh \lambda l & -\sin \lambda l & -\cos \lambda l
\end{array}\right]\left\{\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3} \\
C_{4}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

Solution of determinant matrix generally yields values of λ which then yield frequencies and associated modes (as was done for multiple mass systems in a somewhat similar fashion)

In this case, the determinant of the matrix yields:

$$
C_{3} \sin \lambda l=0
$$

Note: Equations (1 \& 2) give $\mathrm{C}_{2}=\mathrm{C}_{4}=0$
Equations (3 \& 4) give $2 C_{3} \sin \lambda l=0$
\Rightarrow nontrivial: $\lambda \ell=n \pi$
The nontrivial solution is:

$$
\lambda \ell=n \pi
$$

(eigenvalue problem!)
Recalling that:

$$
\begin{aligned}
& \lambda=\left(\frac{m \omega^{2}}{E I}\right)^{1 / 4} \\
& \Rightarrow \frac{m \omega^{2}}{E I}=\frac{n^{4} \pi^{4}}{l^{4}}
\end{aligned}
$$

(change n to r to be consistent with previous notation)

$$
\Rightarrow \quad \omega_{r}=r^{2} \pi^{2} \sqrt{\frac{E I}{m l^{4}}}<-- \text { natural frequency }
$$

As before, find associated mode (eigenvector), by putting this back in the governing matrix equation.

Here (setting $\mathrm{C}_{3}=1 \ldots$. .one "arbitrary" magnitude):

$$
\begin{gathered}
\bar{w}(x)=\phi_{r}=\sin \frac{r \pi x}{l} \quad<--\begin{array}{c}
\text { mode shape (normal mode) } \\
\text { for: } r=1,2,3, \ldots \ldots \infty
\end{array}
\end{gathered}
$$

Note: A continuous system has an infinite number of modes

So total solution is:

$$
w(x, t)=\phi_{r} \sin \omega_{r} t=\sin \frac{r \pi x}{l} \sin \left(r^{2} \pi^{2} \sqrt{\frac{E I}{m l^{4}}} t\right)
$$

--> Vibration modes and frequencies are:

Figure 23.3 Representation of vibration modes of simply-supported beam

Same for other cases

Continue to see the similarity in results between continuous and multimass (degree-of-freedom) systems. Multi-mass systems have predetermined modes since discretization constrains system to deform accordingly.

The extension is also valid for...

Orthogonality Relations

They take basically the same form except now have continuous functions integrated spatially over the regime of interest rather than vectors:

$$
\begin{gather*}
\int_{0}^{l} m(x) \phi_{r}(x) \phi_{s}(x) d x=M_{r} \delta_{r s} \tag{23-9}\\
\text { where: }\left\{\begin{array}{l}
\delta_{r s}=\text { kronecker delta } \begin{cases}=1 & \text { for } \mathrm{r}=\mathrm{s} \\
=0 & \text { for } \mathrm{r} \neq \mathrm{s}\end{cases} \\
M_{r}=\int_{0}^{l} m(x) \phi_{r}^{2}(x) d x \\
\text { generalized mass of the rth mode }
\end{array}\right.
\end{gather*}
$$

So:

$$
\begin{aligned}
& \int_{0}^{l} m \phi_{r} \phi_{s} d x=0 \quad r \neq \mathrm{s} \\
& \int_{0}^{l} m \phi_{r} \phi_{r} d x=M_{r}
\end{aligned}
$$

Also can show (similar to multi degree-of-freedom case):

$$
\begin{equation*}
\int_{0}^{l} \frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} \phi_{r}}{d x^{2}}\right) \phi_{s} d x=\delta_{r s} M_{r} \omega_{r}^{2} \tag{23-10}
\end{equation*}
$$

This again, leads to the ability to transform the equation based on the normal modes to get the...

Normal Equations of Motion

Let:

$$
w(x, t)=\sum_{\substack{\text { r=1 }}}^{\infty} \phi_{r}(x) \xi_{r}(t) \quad \underset{\text { normal coordinates }}{(23-11)}
$$

Place into governing equation:

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)+m \frac{d^{2} w}{d t^{2}}=p_{z}(x)
$$

multiply by ϕ_{s} and integrate $\int_{0}^{l} d x$ to get:

$$
\sum_{r=1}^{\infty} \ddot{\xi}_{r} \int_{0}^{l} m \phi_{r} \phi_{s} d x+\sum_{r=1}^{\infty} \xi_{r} \int_{0}^{l} \phi_{s} \frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} \phi_{r}}{d x^{2}}\right) d x=\int_{0}^{l} \phi_{s} f d x
$$

Using orthogonality conditions, this takes on the same forms as before:

$$
\begin{array}{ll}
& M_{r} \ddot{\xi}_{r}+M_{r} \omega_{r}^{2} \xi_{r}=\Xi_{r} \tag{23-12}\\
\text { with: } & \quad M_{r}=\int_{0}^{l} m \phi_{r}^{2} d x \quad-\text { Generalized mass of } \mathrm{rth} \text { mode } \\
& \Xi_{r}=\int_{0}^{l} \phi_{r} p_{z}(x, t) d x-\text { Generalized force of } \mathrm{rth} \text { mode } \\
& \xi_{r}(\mathrm{t})=\text { normal coordinates }
\end{array}
$$

Once again

- each equation can be solved independently
- allows continuous system to be treated as a series of "simple" one degree-of-freedom systems
- superpose solutions to get total response (Superposition of Normal Modes)
- often only lowest modes are important
- difference from multi degree-of-freedom system: n --> ∞
--> To find Initial Conditions in normalized coordinates...same as before:

$$
\begin{array}{r}
w(x, 0)=\sum_{r} \phi_{r}(x) \xi_{r}(0) \\
\text { etc. }
\end{array}
$$

Thus:

$$
\begin{align*}
& \xi_{r}(0)=\frac{1}{M_{r}} \int_{0}^{l} m \phi_{r} w_{0}(x) d x \tag{23-13}\\
& \dot{\xi}_{r}(0)=\frac{1}{M_{r}} \int_{0}^{l} m \phi_{r} \dot{w}_{0}(x) d x
\end{align*}
$$

Finally, can add the case of...

Forced Vibration

Again... response is made up of the natural modes

- Break up force into series of spatial impulses
- Use Duhamel's (convolution) integral to get response for each normalized mode

$$
\begin{equation*}
\xi_{r}(t)=\frac{1}{M_{r} \omega_{r}} \int_{0}^{t} \Xi_{r}(\tau) \sin \omega_{r}(t-\tau) d \tau \tag{23-14}
\end{equation*}
$$

- Add up responses (equation 23-11) for all normalized modes (Linear \Rightarrow Superposition)

What about the special case of...
--> Sinusoidal Force at point x_{A}

Figure 23.4 Representation of force at point x_{A} on simply-supported beam

$$
F(t)=F_{o} \sin \Omega t
$$

As for single degree-of-freedom system, for each normal mode get:

$$
\xi_{r}(t)=\frac{\phi_{r}\left(x_{A}\right) F_{o}}{M_{r} \omega_{r}^{2}\left(1-\frac{\Omega^{2}}{\omega_{r}^{2}}\right)} \sin \Omega t
$$

for steady state response (Again, initial transient of $\sin \omega_{\mathrm{r}} \mathrm{t}$ dies out due to damping)

Add up all responses...

Note:

- Resonance can occur at any ω_{r}
- DMF (Dynamic Magnification Factor) associated with each normal mode
--> Can apply technique to any system.
- Get governing equation including inertial terms
- Determine Free Vibration Modes and frequencies
- Transform equation to uncoupled single degree-of-freedom system (normal equations)
- Solve each normal equation separately
- Total response equal to sum of individual responses

Modal superposition is a very powerful technique!

