Unit 21 Influence Coefficients

Readings:
Rivello
6.6, 6.13 (again), 10.5

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

Have considered the vibrational behavior of a discrete system. How does one use this for a continuous structure?

First need the concept of.....

Influence Coefficients

which tell how a force/displacement at a particular point "influences" a displacement/force at another point
--> useful in matrix methods...

- finite element method
- lumped mass model (will use this in next unit)
--> consider an arbitrary elastic body and define:
Figure 21.1 Representation of general forces on an arbitrary elastic body

$q_{i}=$ generalized displacement (linear or rotation)
$\mathrm{Q}_{\mathrm{i}}=$ generalized force (force or moment/torque)
Note that Q_{i} and q_{i} are:
- at the same point
- have the same sense (i.e. direction)
- of the same "type"
(force \leftrightarrow displacement) (moment \leftrightarrow rotation)

For a linear, elastic body, superposition applies, so can write:

$$
q_{i}=C_{i j} Q_{j}\left\{\begin{array}{l}
q_{1}=C_{11} Q_{1}+C_{12} Q_{2}+C_{13} Q_{3} \\
q_{2}=C_{21} Q_{1}+C_{22} Q_{2}+C_{23} Q_{3} \\
q_{3}=C_{31} Q_{1}+C_{32} Q_{2}+C_{33} Q_{3}
\end{array}\right.
$$

or in Matrix Notation:

$$
\left\{\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right\}=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]\left\{\begin{array}{l}
Q_{1} \\
Q_{2} \\
Q_{3}
\end{array}\right\}
$$

$$
\begin{gathered}
\stackrel{\text { or }}{\left\{q_{i}\right\}=\left[C_{i j}\right]\left\{Q_{j}\right\}} \\
\text { } \begin{array}{c}
\text { or } \\
\underset{\sim}{\mathbf{q}}=\underset{\sim}{\mathbf{Q}}
\end{array}
\end{gathered}
$$

$\mathrm{C}_{\mathrm{ij}}=$ Flexibility Influence Coefficient
and it gives the deflection at i due to a unit load at j
$\mathrm{C}_{12}=$ is deflection at 1 due to force at 2
Figure 21.2 Representation of deflection point 1 due to load at point 2

(Note: C_{ij} can mix types)

Very important theorem:

Maxwell's Theorem of Reciprocal Deflection

(Maxwell's Reciprocity Theorem)
Figure 21.3 Representation of loads and deflections at two points on an elastic body

q_{1} due to unit load at 2 is equal to q_{2} due to unit load at 1
i.e. $C_{12}=C_{21}$

Generally:

$$
\mathrm{C}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ji}} \quad \text { symmetric }
$$

This can be proven by energy considering (path independency of work)
--> Application of Flexibility Influence Coefficients
Look at a beam and consider 5 points...
Figure 21.4 Representation of beam with loads at five points

The deflections $q_{1} \ldots q_{5}$ can be characterized by:

$$
\left\{\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4} \\
q_{5}
\end{array}\right\}=\left[\begin{array}{ccccc}
C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\
C_{21} & C_{22} & \cdots & \cdots & \vdots \\
\vdots & & \ddots & & \vdots \\
\vdots & & & \ddots & \vdots \\
C_{51} & \cdots & \cdots & \cdots & C_{55}
\end{array}\right]\left[\begin{array}{l}
Q_{1} \\
Q_{2} \\
Q_{3} \\
Q_{4} \\
Q_{5}
\end{array}\right\}
$$

Since $C_{i j}=C_{j i}$, the $\left[C_{i j}\right]$ matrix is symmetric
Thus, although there are 25 elements to the C matrix in this case, only 15 need to be computed.
So, for the different loads $Q_{1} \ldots Q_{5}$, one can easily compute the $q_{1} \ldots q_{5}$ from previous work...
Example: C_{ij} for a Cantilevered Beam
Figure 21.5 Representation of cantilevered beam under load

find: C_{ij}--> deflection at i due to unit load at j

- Most efficient way to do this is via Principle of Virtual Work (energy technique)
- Resort here to using simple beam theory:

$$
E I \frac{d^{2} w}{d x^{2}}=M(x)
$$

What is $M(x)$?
--> First find reactions:
Figure 21.6 Free body diagram to determine reactions in cantilevered beam

$$
\begin{aligned}
\Rightarrow V & =1 \\
M & =-1 x_{j}
\end{aligned}
$$

$-->$ Now find $M(x)$. Cut beam short of x_{j} :
Figure 21.7 Free body diagram to determine moment along cantilevered beam

$$
\begin{aligned}
& \sum M_{x}=0+0 \\
& \Rightarrow 1 \cdot x_{j}-1 \cdot x+M(x)=0 \\
& \Rightarrow M(x)=-1\left(x_{j}-x\right)
\end{aligned}
$$

Plugging into deflection equation:

$$
E I \frac{d^{2} w}{d x^{2}}=-1\left(x_{j}-x\right)
$$

for EI constant:

$$
\begin{aligned}
& \frac{d w}{d x}=-\frac{1}{E I}\left(x_{j} x-\frac{x^{2}}{2}\right)+C_{1} \\
& w=-\frac{1}{E I}\left(x_{j} \frac{x^{2}}{2}-\frac{x^{3}}{6}\right)+C_{1} x+C_{2}
\end{aligned}
$$

Boundary Conditions:

$$
\begin{aligned}
& @ x=0 \quad w=0 \Rightarrow C_{2}=0 \\
& @ x=0 \quad \frac{d w}{d x}=0 \Rightarrow C_{1}=0
\end{aligned}
$$

So:

$$
w=-\frac{1}{E I}\left(x_{j} \frac{x^{2}}{2}-\frac{x^{3}}{6}\right)
$$

evaluate at x_{i} :

$$
w=\frac{1}{2 E I}\left(\frac{x_{i}^{3}}{3}-x_{i}^{2} x_{j}\right)
$$

One important note:
w is defined as positive up, have defined q_{i} as positive down. So:

$$
q_{i}=-w=\frac{1}{2 E I}\left(x_{i}^{2} x_{j}-\frac{x_{i}^{3}}{3}\right)
$$

$$
\begin{gathered}
\Rightarrow C_{i j}=\frac{1}{E I}\left(\frac{x_{i}^{2} x_{j}}{2}-\frac{x_{i}^{3}}{6}\right) \text { for } \mathrm{x}_{\mathrm{i}} \leq \mathrm{x}_{\mathrm{j}} \\
\text { Deflection, } \mathrm{q}_{\mathrm{i}} \text {, at } \mathrm{x}_{\mathrm{i}} \text { due to unit force, } \mathrm{Q}_{\mathrm{j}} \text {, at } \mathrm{x}_{\mathrm{j}}
\end{gathered}
$$

--> What about for $x_{i} \leq x_{i}$? Does one need to go through this whole procedure again?
No! Can use the same formulation due to the symmetry of C_{ij}

$$
\left(\mathrm{C}_{\mathrm{ij}}=\mathrm{C}_{\mathrm{j}}\right)
$$

--> Thus far have looked at the influence of a force on a displacement.
May want to look at the "opposite": the influence of a displacement on a force. Do this via...

Stiffness Influence Coefficients

$$
\equiv \mathrm{k}_{\mathrm{ij}}
$$

where can write:

$$
\begin{aligned}
& Q_{1}=k_{11} q_{1}+k_{12} q_{2}+k_{13} q_{3} \\
& Q_{2}=k_{21} q_{1}+k_{22} q_{2}+k_{23} q_{3} \\
& Q_{3}=k_{31} q_{1}+k_{32} q_{2}+k_{33} q_{3}
\end{aligned}
$$

or write:

$$
\begin{aligned}
& \left\{Q_{i}\right\}=\left[k_{i j}\right]\left\{q_{j}\right\} \\
& \underline{\text { or: }} \\
& \underset{\sim}{\mathrm{Q}}=\underset{\sim}{\mathrm{k}} \mathrm{q}
\end{aligned}
$$

If compare this with:

$$
\begin{array}{ll}
\underset{\sim}{\mathrm{q}}=\underset{\sim}{\mathrm{C}} \underset{\sim}{Q} & \\
& \Rightarrow \underset{\sim}{\mathrm{k}}={\underset{\sim}{C}}^{-1} \\
& {\left[k_{i j}\right]=\left[C_{i j}\right]^{-1} \text { inverse matrix }}
\end{array}
$$

Note: Had a similar situation in the continuum case:

--> Look at the Physical Interpretations:

Flexibility Influence Coefficients

Figure 21.8 Physical representation of flexibility influence coefficients for cantilevered beam

$\mathrm{C}_{\mathrm{ij}}=$ displacement at i due to unit load at j
Note: This is only defined for sufficiently constrained structure

Stiffness Influence Coefficients

Figure 21.9 Physical representation of stiffness influence coefficients for cantilevered beam

$\mathrm{k}_{\mathrm{ij}}=$ forces at i's to give a unit displacement at j and zero displacement everywhere else (at nodes)
(much harder to think of than C_{ij})
Note: This can be defined for unconstrained structures
--> Can find k_{ij} by:

- calculating $\left[\mathrm{C}_{\mathrm{ij}}\right]$ first, then inverting

$$
k_{i j}=\frac{(-1)^{i+j}}{|\Delta|}\left|\begin{array}{c}
\text { minor of } \\
C_{i j}
\end{array}\right| \text { determinant of }\left[\mathrm{C}_{\mathrm{ij}}\right]
$$

Note: k^{-1} may be singular (indicates "rigid body" modes)
--> rotation
--> translation
--> etc.

- calculating $\left[\mathrm{k}_{\mathrm{ij}}\right]$ directly from individual local $\left[\mathrm{k}_{\mathrm{ij}}\right.$] elements and adding up for the total system

Most convenient way

Note: This latter method is the basis for finite element methods

