## **Unit 19** General Dynamic Considerations

Reference: Elements of Vibration Analysis, Meirovitch, McGraw-Hill, 1975.

Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems

# VI. (Introduction to) Structural Dynamics

Thus far have considered only static response. However, things also move, this includes structures.

Can actually identify three "categories" of response:

- A. (Quasi) Static ["quasi" because the load must first be applied]
- B. Dynamic
- C. Wave Propagation

What is the key consideration in determining which regime one is in? --> the frequency of the forcing function

Example: Mass on a Spring

Figure 19.1 Representation of mass on a spring



A) Push <u>very</u> slowly

Figure 19.2 Representation of force increasing slowly with time



The response is basically determined by:

$$F = kq$$
  

$$\Rightarrow q(t) = \frac{F(t)}{k} \approx \frac{F}{k}$$

*Figure 19.3* Deflection response versus time for mass in spring with loads slowly increasing with time



#### B) Push with an oscillating magnitude

Figure 19.4 Representation of force with oscillating magnitude



The response also oscillates

**Figure 19.5** Representation of oscillating response



Fall, 2002

## C) Whack mass with a hammer

 $\Rightarrow$  Force is basically a unit impulse

*Figure 19.6* Representation of unit impulse force



Force has very high frequencies

Response is (structural) waves in spring with no global deflection

MIT - 16.20

--> Represent this as

Figure 19.7 Representation of regions of structural response versus frequency of forcing function



What determines division points between regimes?

- --> borderline between quasi-static and dynamic is related to natural frequency of <u>structure</u>. Depends on:
  - structural stiffness
  - structural "characteristic length"

--> gives natural frequency of structure

--> borderline between dynamic and waves is related to speed of waves (sound) in <u>material</u>. Depends on:

• modulus

speed = 
$$\sqrt{\frac{E}{\rho}}$$

- --> These are not well-defined borderlines
  - depends on specifics of configuration
  - actually transition regions, not borders
  - interactions between behaviors

So illustration is:





**EXAMPLE** = region of transition

Statics -- Unified and 16.20 to date Waves -- Unified (Structural) Dynamics -- 16.221 (graduate course).

Look at what we must include/add to our static considerations Consider the simplest ones...

## The Spring-Mass System

Are probably used to seeing it as:

Figure 19.9 General representation of spring-mass system



MIT - 16.20

For easier relation to the structural configuration (which will later be made), draw this as a rolling cart of mass attached to a wall by a spring:

Figure 19.10 Alternate representation of spring-mass system



- The mass is subjected to some force which is a function of time
- The position of the mass is defined by the parameter q
- Both F and q are defined positive in the positive x-direction Static equation: F = kq
- What must be added in the dynamic case?
   Inertial load(s) = mass x acceleration

In this case:

```
inertial load = -m\ddot{q}
```

where:

$$(\cdot) = \frac{d}{dt}$$
 (derivative with respect to time)

*Figure 19.11* Free body diagram for this configuration:



This is a 2nd order Ordinary Differential Equation in time.

When the Ordinary/Partial Differential Equation is in <u>space</u>, need <u>Boundary</u> Conditions. Now that the Differential Equation is in time, need <u>Initial</u> Conditions.

2nd Order  $\Rightarrow$  need 2 Initial Conditions

Here:

$$\begin{array}{cccc} @ & t = 0 & q = q_0 \\ & \dot{q} = \dot{q}_0 \end{array} \end{array} some initial values given (may often be zero)$$

Will look at how to solve this in the next unit.

There is another consideration that generally occurs in real systems -- <u>DAMPING</u>.

For the spring-mass system, this is represented by a dashpot with a constant c which produces a force in proportion to the velocity:

#### *Figure 19.12* Representation of spring-mass system with damping



Here the free body diagram is:

Figure 19.13 Free body diagram of spring-mass system with damping



From here on: <u>neglect</u> <u>damping</u>

Can build on what has been done and go to a...

## Multi-Mass System

For example, consider two masses linked by springs:

Each mass has stiffness,  $(k_i)$  mass  $(m_i)$  and force  $(F_i)$  with associated deflection,  $q_i$ 

Figure 19.14 Representation of multi-mass (and spring) system



Consider the free body diagram for each mass:

• <u>Mass1</u>

Figure 19.15 Face body diagram of Mass 1 in multi-mass system



$$\sum F = 0$$

yields:

$$F_1 + k_2(q_2 - q_1) - k_1q_1 - m_1\ddot{q}_1 = 0$$

• <u>Mass 2</u>

Figure 19.16 Free body diagram of Mass 2 in multi-mass system



$$\sum F = 0$$

yields:

$$F_2 - k_2 (q_2 - q_1) - m_2 \ddot{q}_2 = 0$$

Rearrange and unite these as (grouping terms):

$$m_1 \ddot{q}_1 + (k_1 + k_2)q_1 - k_2 q_2 = F_1$$
  
$$m_2 \ddot{q}_2 - k_2 q_1 + k_2 q_2 = F_2$$

--> Two coupled Ordinary Differential Equations

Unit 19 - 16

MIT - 16.20

Write in matrix form:

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} (k_1 + k_2) & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$
  
or:  
$$\underset{\overbrace{}}{\mathsf{mass}} + \underset{\overbrace{}}{\mathsf{kq}} = \underset{\overbrace{}}{\mathsf{F}}$$
  
mass stiffness matrix  
matrix

Note that the stiffness matrix is symmetric (as it has been in all other considerations)

$$k_{ij} = k_{ji}$$

This formulation can then be extended to 3, 4....n masses with

$$\begin{split} m_i &= mass \text{ of unit i} \\ k_i &= stiffness \text{ of spring of unit i} \\ q_i &= displacement \text{ of unit i} \\ F_i &= force \text{ acting on unit i} \\ &= tc. \end{split}$$

Will next consider solutions to this equation. But first talk about why these considerations are important in structures.

First issue -- what causes such response are:

## **Dynamic Structural Loads**

Generic sources of dynamic loads:

- Wind (especially gusts)
- Impact
- Unsteady motion (inertial effects)
- Servo systems
  - •

How are these manifested in particular types of structures?

## <u>Aircraft</u>

• Gust loads and turbulence flutter

(<u>aeroelasticity</u> is interaction of aerodynamic, elastic and inertial forces)

• Servo loads (and aero loads) on control surfaces

**Spacecraft** 

#### Automobiles, Trains, etc.

## **Civil Structures**

## Earthquakes and Buildings

What does this all result in?

A response which is comprised of two parts:

- rigid-body motion
- elastic deformation and vibration of structure

MIT - 16.20

Note that:

- Peak dynamic deflections and stresses can be several times that of the static values
- Dynamic response can (quickly) lead to fatigue failure (Helicopter = a fatigue machine!)
- Discomfort for passengers (think of a car without springs)

So there is a clear need to study structural dynamics

Before dealing with the continuous structural system, first go back to the simple spring-mass case and learn:

- Solutions for spring-mass systems
- How to model a continuous system as a discrete spring-mass system

then...

• Extend the concept to a continuous system