Unit 17 The Beam-Column

Readings:
Theory of Elastic Stability, Timoshenko (and Gere), McGraw-Hill, 1961 (2nd edition), Ch. 1

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

Thus far have considered separately:

- beam -- takes bending loads
- column -- takes axial loads

Now combine the two and look at the "beam-column"
(Note: same geometrical restrictions as on others:
$\ell \gg$ cross- sectional dimensions)
Consider a beam with an axial load (general case):
Figure 17.1 Representation of beam-column

Consider 2-D case:

Cut out a deformed element dx :
Figure 17.2 Loads and moment acting on deformed infinitesimal element of beam-column

Assume small angles such that:

$$
\begin{aligned}
& \sin \frac{d w}{d x} \approx \frac{d w}{d x} \\
& \cos \frac{d w}{d x} \approx 1
\end{aligned}
$$

Sum forces and moments:

- $\sum F_{x}=0 \xrightarrow{+}$:

$$
\begin{aligned}
& -F+F+\frac{d F}{d x} d x+p_{x} d x \\
& \quad-S \frac{d w}{d x}+\left(S+\frac{d S}{d x} d x\right)\left(\frac{d w}{d x}+\frac{d^{2} w}{d x^{2}} d x\right)=0
\end{aligned}
$$

This leaves:

$$
\frac{d F}{d x} d x+p_{x} d x+\left(\frac{d S}{d x} \frac{d w}{d x}+S \frac{d^{2} w}{d x^{2}}\right) d x+\underset{\substack{(\mathrm{dx})^{2} \\ \text { H.O.T. }}}{ }=0
$$

$$
\begin{equation*}
\Rightarrow \frac{\frac{d F}{d x}=-p_{x}-\underbrace{\frac{d}{d x}\left(S \frac{d w}{d x}\right)}_{\text {new term }}}{\underbrace{\frac{d}{d}}} \tag{17-1}
\end{equation*}
$$

- $\sum F_{z}=0 \uparrow+:$

$$
\begin{aligned}
-F \frac{d w}{d x}+ & \left(F+\frac{d F}{d x} d x\right)\left(\frac{d w}{d x}+\frac{d^{2} w}{d x^{2}} d x\right) \\
& +S-\left(S+\frac{d S}{d x} d x\right)+p_{z} d x=0
\end{aligned}
$$

This results in:

$$
\begin{equation*}
\frac{d S}{d x}=p_{z}+\underbrace{\frac{d}{d x}\left(F \frac{d w}{d x}\right)} \tag{17-2}
\end{equation*}
$$

new term

- $\sum M_{y}=0 \quad f+:$

$$
\begin{aligned}
&-M+M+\frac{d M}{d x} d x+p_{z} d x \frac{d x}{2} \\
&-p_{x} d x \frac{d w}{d x} \frac{d x}{2}-\left(S+\frac{d S}{d x} d x\right) d x=0
\end{aligned}
$$

(using the previous equations) this results in:

$$
\begin{equation*}
\frac{d M}{d x}=S \tag{17-3}
\end{equation*}
$$

Note: same as before (for Simple Beam Theory)
Recall from beam bending theory:

$$
\begin{equation*}
M=E I \frac{d^{2} w}{d x^{2}} \tag{17-4}
\end{equation*}
$$

Do some manipulating - place (17-4) into (17-3):

$$
\begin{equation*}
S=\frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right) \tag{17-5}
\end{equation*}
$$

and place this into (17-2) to get:

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)-\frac{d}{d x}\left(F \frac{d w}{d x}\right)=p_{z} \tag{17-6}
\end{equation*}
$$

Basic differential equation for Beam-Column -(Bending equation -- fourth order differential equation)
--> To find the axial force $F(x)$, place (17-5) into (17-1):

$$
\frac{d F}{d x}=-p_{x}-\frac{d}{d x}\left[\frac{d w}{d x} \frac{d}{d x}\left(E I \frac{d^{2} w}{d x^{2}}\right)\right]
$$

For w small, this latter part is a second order term in w and is therefore negligible

Thus:

$$
\begin{equation*}
\frac{d F}{d x}=-p_{x} \tag{17-7}
\end{equation*}
$$

Note: Solve this equation first to find $F(x)$ distribution and use that in equation (17-6)
Examples of solution to Equation (17-7)

- End compression P_{0}

Figure 17.3 Simply-supported column under end compression

$$
\frac{d F}{d x}=0 \Rightarrow \mathrm{~F}=\mathrm{C}_{1}
$$

find C_{1} via boundary condition $@ x=0, F=-P_{0}=C_{1}$

$$
\Rightarrow F=-P_{0}
$$

- Beam under its own weight

Figure 17.4 Representation of end-fixed column under its own weight

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{x}}=-\mathrm{mg} \\
& \frac{d F}{d x}=+m g \quad \Rightarrow \mathrm{~F}=\mathrm{mgx}+\mathrm{C}_{1}
\end{aligned}
$$

boundary condition: @ $\mathrm{x}=\ell, \mathrm{F}=0$
So: $m g \ell+C_{1}=0 \Rightarrow C_{1}=-m g \ell$

$$
\Rightarrow F=-m g(\ell-x)
$$

- Helicopter blade

Figure 17.5 Representation of helicopter blade

(radial force due to rotation)
similar to previous case
Once have $F(x)$, proceed to solve equation (17-6). Since it is fourth order, need four boundary conditions (two at each end of the beamcolumn)
--> same possible boundary conditions as previously enumerated
Notes:

- When EI --> 0, equation (17-6) reduces to:

$$
-\frac{d}{d x}\left(F \frac{d w}{d x}\right)=p_{z}
$$

this is a string (second order \Rightarrow only need two boundary conditions
-- one at each end)
(also note that a string cannot be clamped since it cannot carry a moment)

- If $\mathrm{F}=0$, get:

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)=p_{z} \\
& \quad \text { and for EI constant: }
\end{aligned}
$$

$$
E I \frac{d^{4} w}{d x^{4}}=p_{z} \quad \text { (basic bending equation) }
$$

- For $p_{z}=0$, EI constant, and F constant ($=-P$), get:

$$
E I \frac{d^{4} w}{d x^{4}}+P \frac{d^{2} w}{d x^{2}}=0 \quad \text { (basic buckling equation) }
$$

Buckling of Beam-Column

Consider the overall geometry (assume beam-column initially straight)

Figure 17.6 Representation of general configuration of beam-column

Cut the beam-column:
Figure 17.7 Representation of beam-column with cut to determine stress resultants

secondary moment (due to deflection)
gives:

$$
M=E I \frac{d^{2} w}{d x^{2}}=M_{\text {primary }}-P w
$$

for transverse loading:

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} w}{d x^{2}}\right)-\frac{d}{d x}\left(F \frac{d w}{d x}\right)=p_{z} \\
& \quad \text { integrate twice with } \mathrm{F}=-\mathrm{P}=\mathrm{C}_{1}
\end{aligned}
$$

$$
E I \frac{d^{2} w}{d x^{2}}+P w=M_{p r i m a r y}
$$

same equation as by doing equilibrium
Solve this by:

- getting homogenous solution for w
- getting particular solution for $\mathrm{M}_{\text {primary }}$
- applying boundary condition

Figure 17.8 Representation of moment(s) versus applied load for beam-column

Examples

- "Old" airplanes w/struts

- Space structure undergoing rotation

Final note: The beam-column is an important concept and the moments in a beam-column can be much worse/higher than beam theory or a perfect column alone

