Unit 14
 Behavior of General (including Unsymmetric Cross-section) Beams

Readings:

Rivello
7.1-7.5, 7.7, 7.8

T \& G
126

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

Earlier looked at Simple Beam Theory in which one considers a beam in the $x-z$ plane with the beam along the x-direction and the load in the z-direction:

Figure 14.1 Representation of Simple Beam

Now look at a more general case:

- Loading can be in any direction
- Can resolve the loading to consider transverse loadings $p_{y}(x)$ and $p_{z}(x)$; and axial loading $p_{x}(x)$
- Include a temperature distribution $T(x, y, z)$

Figure 14.2 Representation of General Beam

Maintain several of the same definitions for a beam and basic assumptions.

- Geometry: length of beam (x-dimension) greater than y and z dimensions
- Stress State: $\sigma_{x x}$ is the only "important" stress; $\sigma_{x y}$ and $\sigma_{x z}$ found from equilibrium equations, but are secondary in importance
- Deformation: plane sections remain plane and perpendicular to the midplane after deformation (Bernouilli-Euler Hypothesis)

Definition of stress resultants

Consider a cross-section along x:
Figure 14.3 Representation of cross-section of general beam

Place axis @ center of gravity of section
where:

$$
\begin{aligned}
& F=\iint \sigma_{x x} d A \\
& S_{y}=-\iint \sigma_{x y} d A \\
& S_{z}=-\iint \sigma_{x z} d A
\end{aligned}
$$

$$
\begin{aligned}
& M_{y}=-\iint \sigma_{x x} z d A \\
& M_{z}=-\iint \sigma_{x x} y d A
\end{aligned}
$$

These are resultants!

The values of these resultants are found from statics in terms of the loading p_{x}, p_{y}, p_{z}, and applying the boundary conditions of the problem

Deformation
Look at the deformation. In the case of Simple Beam Theory, had:

$$
u=-z \frac{d w}{d x}
$$

where u is the displacement along the x-axis.
This comes from the picture:

Figure 14.4 Representation of deformation in Simple Beam Theory

Now must add two other contributions.....

1. Have the same situation in the $x-y$ plane

Figure 14.5 Representation of bending displacement in $x-y$ plane

where v is the displacement in the y-direction
2. Allow axial loads, so have an elongation in the x-direction due to this. Call this u_{0} :

Figure 14.6 Representation of axial elongation in x-z plane

$\mathrm{u}_{0}, \mathrm{v}, \mathrm{w}$ are the deformations of the midplane
Thus:

$$
u(x, y, z)=u_{0}-\underbrace{y \frac{d v}{d x}}-\underbrace{z \frac{d w}{d x}}
$$

bending bending about about z-axis $\quad y$-axis
$v(x, y, z)=v(x)$
$w(x, y, z)=w(x)$
v and w are constant at any cross-section location, x

Stress and Strain

From the strain-displacement relation, get:

$$
\varepsilon_{x x}=\frac{\partial u}{\partial x}=\frac{d u_{0}}{d x}+y\left(-\frac{d^{2} v}{d x^{2}}\right)+z\left(-\frac{d^{2} w}{d x^{2}}\right)
$$

(these become total derivatives as there is no variation of the displacement in y and z)
for functional ease, write:

$$
\begin{aligned}
f_{1} & =\frac{d u_{0}}{d x} \\
f_{2} & =-\frac{d^{2} v}{d x^{2}} \\
f_{3} & =-\frac{d^{2} w}{d x^{2}}
\end{aligned}
$$

Caution: Rivello uses $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$. These are not constants, so use $f_{i} \Rightarrow f_{i}(x)$ (functions of x)

Thus:

$$
\varepsilon_{x x}=f_{1}+f_{2} y+f_{3} z
$$

Then use this in the stress-strain equation (orthotropic or "lower"):

$$
\varepsilon_{x x}=\frac{\sigma_{x x}}{E}+\alpha \Delta T_{\text {(include temperature effects) }}
$$

Note: "ignore" thermal strains in y and z. These are of "secondary" importance.

Thus:

$$
\sigma_{x x}=E \varepsilon_{x x}-E \alpha \Delta T
$$

and using the expression for ε_{x} :

$$
\sigma_{x x}=E\left(f_{1}+f_{2} y+f_{3} z\right)-E \alpha \Delta T
$$

Can place this expression into the expression for the resultants (force and moment) to get:

$$
\begin{aligned}
& F=\iint \sigma_{x x} d A=f_{1} \iint E d A+f_{2} \iint E y d A \\
&+f_{3} \iint E z d A-\iint E \alpha \Delta T d A \\
&-M_{z}=\iint \sigma_{x x} y d A=f_{1} \iint E y d A+f_{2} \iint E y^{2} d A \\
&+f_{3} \iint E y z d A-\iint E \alpha \Delta T y d A \\
&-M_{y}=\iint \sigma_{x x} z d A=f_{1} \iint E z d A+f_{2} \iint E y z d A \\
&+f_{3} \iint E z^{2} d A-\iint E \alpha \Delta T z d A
\end{aligned}
$$

(Note: f_{1}, f_{2}, f_{3} are functions of x and integrals are in dy and dz , so these come outside the integral sign).

Solve these equations to determine $f_{1}(x), f_{2}(x), f_{3}(x)$:
Note: Have kept the modulus, E, within the integral since will allow it to vary across the cross-section

Orthotropic Beams: Same comments as applied to Simple Beam Theory. The main consideration is the longitudinal modulus, so these equations can be applied.

Modulus-Weighted Section Properties/Areas

Introduce "modulus weighted area":

$$
d A^{*}=\frac{E}{E_{1}} d A \quad(\text { vary in y and z) }
$$

where:
A* $=$ modulus weighted area
$\mathrm{E}=$ modulus of that area
$E_{1}=$ some reference value of modulus
Using this in the equations for the resultants, we get:

$$
\begin{aligned}
& F+\iint E \alpha \Delta T d A=E_{1}\left\{f_{1} \iint d A^{*}+f_{2} \iint y d A^{*}+f_{3} \iint z d A^{*}\right\} \\
& -M_{z}+\iint E \alpha \Delta T y d A=E_{1}\left\{f_{1} \iint y d A^{*}+f_{2} \iint y^{2} d A^{*}+f_{3} \iint y z d A^{*}\right\} \\
& -M_{y}+\iint E \alpha \Delta T z d A=E_{1}\left\{f_{1} \iint z d A^{*}+f_{2} \iint y z d A^{*}+f_{3} \iint z^{2} d A^{*}\right\}
\end{aligned}
$$

Now define these "modulus-weighted" section properties:

$$
\begin{array}{rlrl}
\iint d A^{*} & =A^{*} & \text { modulus-weighted area } \\
\iint y d A^{*} & =\bar{y}^{*} A^{*} & \\
\iint z d A^{*} & =\bar{z}^{*} A^{*} & & \\
\iint y^{2} d A^{*} & =I_{z}^{*} & \text { modulus-weighted moment of inertia about z-axis } \\
\iint z^{2} d A^{*} & =I_{y}^{*} & \text { modulus-weighted moment of inertia about y-axis } \\
\iint y z d A^{*} & =I_{y z}^{*} & \text { modulus-weighted product of inertia } & \text { ("cross") } \\
\left.\int m o m e n t ~ o f ~ i n e r t i a\right) ~
\end{array}
$$

Also have "Thermal Forces" and "Thermal Moments". These have the same "units" as forces and moments but are due to thermal effects and can then be treated analytically as forces and moments:

$$
\begin{aligned}
F^{T} & =\iint E \alpha \Delta T d A \\
M_{y}^{T} & =-\iint E \alpha \Delta T z d A \quad M_{z}^{T}=-\iint E \alpha \Delta T y d A
\end{aligned}
$$

Note: Cannot use the modulus-weighted section properties since α may also vary in y and z along with E .
In the definition of the section properties, have used a $\overline{\mathrm{y}}^{*}$ and \bar{z}^{*}. These are the location of the "modulus-weighted centroid" referred to some coordinate system
Figure 14.7 Representation of general beam cross-section with pieces with different values of modulus

The modulus-weighted centroid is defined by:

$$
\begin{aligned}
& \frac{1}{A^{*}} \iint y d A^{*}=\bar{y}^{*} \\
& \frac{1}{A^{*}} \iint z d A^{*}=\bar{z}^{*}
\end{aligned}
$$

These become 0 if one uses the modulus-weighted centroid as the origin
(Note: like finding center of gravity but use E rather than ρ)

If one uses the modulus-weighted centroid as the origin, the equations reduce to:

$$
\begin{aligned}
\left(F+F^{T}\right) & =F^{T O T}=E_{1} f_{1} A^{*} \\
-\left(M_{z}+M_{z}^{T}\right) & =-M_{z}^{T O T}=E_{1}\left(f_{2} I_{z}^{*}+f_{3} I_{y z}^{*}\right) \\
-\left(M_{y}+M_{y}^{T}\right) & =-M_{y}^{T O T}=E_{1}\left(f_{2} I_{y z}^{*}+f_{3} I_{y}^{*}\right)
\end{aligned}
$$

(Note: Rivello uses $\mathrm{F}^{*}, \mathrm{M}_{\mathrm{y}}{ }^{*}, \mathrm{M}_{\mathrm{z}}{ }^{*}$ for $\mathrm{F}^{\text {TOT }}, \mathrm{M}_{\mathrm{y}}{ }^{\text {TOT }}, \mathrm{M}_{\mathrm{z}}{ }^{\text {TOT }}$)

Recall that:

$$
\begin{aligned}
& f_{1}=\frac{d u_{0}}{d x} \\
& f_{2}=-\frac{d^{2} v}{d x^{2}} \\
& f_{3}=-\frac{d^{2} w}{d x^{2}}
\end{aligned}
$$

Motivation for "modulus-weighted' section properties

A beam may not have constant material properties through the section. Two possible ways to vary:

1. Continuous variation

The modulus may be a continuous function of y and z :

$$
E=E(y, z)
$$

Example: Beam with a large thermal gradient and four different properties through the cross-section
2. Stepwise variation

A composite beam which, although it's made of the same material, has different modulus, E_{x}, through-the-thickness as the fiber orientation varies from ply to ply.

Figure 14.8 Representation of cross-section of laminated beam with different modulus values through the thickness

A method of putting material to its best use is called:

"Selective Reinforcement"

Figure 14.9 Representation of selective reinforcement of an I-beam

Unidirectional Graphite/Epoxy cap reinforcements ($\mathrm{E}=\mathbf{2 0} \mathbf{~ M s i}$)

Aluminum I-beam ($\mathrm{E}=10 \mathrm{Msi}$)

Furthest from neutral axis \Rightarrow best resistance to bending

Using aluminum as the reference, analyze as follows
Figure 14.10 Representative cross-section with aluminum as base

Representation good only
Representation good only
in direction parallel to axis about which I is taken.

use E_{1} to analyze

$$
\frac{E}{E_{1}} b=\frac{20 m s i}{10 m s i} b=2 b
$$

Principal Axes of structural cross-section:

> There is a set of y, z axes such that the product of inertia $\left(\mathrm{I}_{\mathrm{yz}}^{*}\right)$ is zero. These are the principal axes (section has axes of symmetry)

Figure 14.11 Representation of principal axes of structural cross-section

If analysis is conducted in the principal axes, the equations reduce to:

$$
\begin{aligned}
& f_{1}=\frac{F^{T O T}}{E_{1} A^{*}}=\frac{d u_{0}}{d x} \\
& f_{2}=-\frac{M_{z}^{T O T}}{E_{1} I_{z}^{*}}=-\frac{d^{2} v}{d x^{2}} \\
& f_{3}=-\frac{M_{y}^{T O T}}{E_{1} I_{y}^{*}}=-\frac{d^{2} w}{d x^{2}}
\end{aligned}
$$

These equations can be integrated to find the deflections u_{0}, v and w
These expressions for the f_{i} can be placed into the equation for $\sigma_{x x}$ to obtain:

$$
\sigma_{x x}=\frac{E}{E_{1}}\left\{\frac{F^{T O T}}{A^{*}}-\frac{M_{z}^{T O T}}{I_{z}^{*}} y-\frac{M_{y}^{T y T}}{I_{y}^{*}} z-E_{1} \alpha \Delta T\right\}
$$

where y, z are principal axes for the section

If the axes are not principal axes ($\mathrm{I}_{\mathrm{yz}}^{*} \neq 0$), have:

$$
\begin{aligned}
& f_{1}=\frac{F^{T O T}}{E_{1} A^{* *}}=\frac{d u_{0}}{d x} \quad \text { (no change) } \\
& f_{2}=\frac{-I_{y}^{*} M_{z}^{T O T}+I_{y z}^{*} M_{y}^{\text {TOT }}}{E_{1}\left(I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}\right)}=-\frac{d^{2} v}{d x^{2}} \\
& f_{3}=\frac{-I_{z}^{*} M_{y}^{T O T}+I_{y z}^{*} M_{z}^{\text {TOT }}}{E_{1}\left(I_{y}^{*} I_{z}^{*}-I_{y z}^{* *}\right)}=-\frac{d^{2} w}{d x^{2}}
\end{aligned}
$$

Note: If $\mathrm{I}_{\mathrm{yz}}^{*} \neq 0$ then both w and v are present for M_{y} or M_{z} only

Figure 14.12 Representation of deflection of cross-section not in principal axes

In this case, the expression for the stress is rather long:

$$
\begin{aligned}
\sigma_{x x}=\frac{E}{E_{1}}\left\{\frac{F^{T O T}}{A^{*}}\right. & -\frac{\left[I_{y}^{*} M_{z}^{T O T}-I_{y z}^{*} M_{y}^{T O T}\right] y}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}} \\
& \left.-\frac{\left[I_{z}^{*} M_{y}^{T O T}-I_{y z}^{*} M_{z}^{T O T}\right] z}{I_{y}^{*} I_{z}^{*}-I_{y z}^{* 2}}-E_{1} \alpha \Delta T\right\}
\end{aligned}
$$

"Engineering Beam Theory" (Non-Principal Axes)

Analysis is good for high aspect ratio structure (e.g. a wing)
Figure 14.13 Representation of wing as beam

Note: this analysis neglects the effect of the axial Force F on the Bending Moment. This became important as the deflection w (or v) becomes large:
Figure 14.14 Representation of large deflection when axial force and bending deflection couple

$$
M=\underbrace{M_{\text {due to } p_{2}}}_{\text {Primary }}-\underbrace{w F_{0}}_{\text {Secondary }}
$$

Bending Moment
Moment

Secondary moment known as "membrane effect". Can particularly become important if F_{0} is near buckling load (will talk about when talk about beam-column)

Shear Stresses

The shear stresses ($\sigma_{x y}$ and $\sigma_{x z}$) can be obtained from the equilibrium equations:

$$
\begin{aligned}
& \frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z}=-\frac{\partial \sigma_{x x}}{\partial x} \\
& \frac{\partial \sigma_{x y}}{\partial x}=0 \\
& \frac{\partial \sigma_{x z}}{\partial x}=0
\end{aligned}
$$

Figure 14.15 Representation of cross-section of general beam

These shear stresses (called "transverse" shear stresses) cause "small" additional shearing contributions to deflections
Figure 14.16 Representation of pure bending and pure shearing of a beam

Pure Bending -->

Plane sections remain plane and perpendicular to midplane

Pure Shearing -->

Plane sections remain plane but not perpendicular to midplane

Consider a beam section under "pure shearing"...
Figure 14.17 Representation of deformation of beam cross-section under pure shearing

$$
\begin{aligned}
& \gamma_{x z}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}=\frac{\sigma_{x z}}{G} \\
& \text { engineering shear strain }
\end{aligned}
$$

Average $\frac{\partial W}{\partial x}$ over cross-section:

$$
\left(\frac{\partial w}{\partial x}\right)_{\text {ave }}=\frac{\iint\left(\frac{\partial w}{\partial x}\right) d A}{\iint d A}=\frac{\frac{1}{G} \overbrace{\iint \sigma_{x z} d A}^{S_{z}}}{A}=-\frac{S_{z}}{G A}
$$

Actually, from energy considerations, one should average:

$$
\left(\frac{\partial w}{\partial x}\right)_{\text {ave }}=\frac{\iint\left(\frac{\partial w}{\partial x}\right)^{2} d A}{\iint \frac{\partial w}{\partial x} d A} \approx-\frac{S_{z}}{G A_{e}} \begin{gathered}
\uparrow \\
\text { "effective area" }
\end{gathered}
$$

For a Rectangular Cross-Section: $A_{e} \approx 0.83 \mathrm{~A}$
Then, "pure shearing" deflections, w_{s}, governed by:

$$
\begin{aligned}
& \frac{d w_{s}}{d x}=-\frac{S}{G A_{e}} \\
& w_{s}=-\int_{0}^{x} \frac{S}{G A_{e}}+\underbrace{C_{1}}_{\text {evaluated from boundary conditions }}
\end{aligned}
$$

The total beam deflection is the sum of the two contributions:

$$
W_{T}=W_{B}+W_{S}
$$

$$
\text { total } w_{\text {bending deflection }}^{w_{T}=w_{B}+w_{s}} \begin{aligned}
& \text { shearing deflection } \\
& \text { from }
\end{aligned} G A_{e} \frac{d w_{S}}{d x}=-S
$$

from

$$
E I \frac{d^{2} w_{B}}{d x^{2}}=M
$$

Ordinarily, w_{s} is small for ordinary rectangular beams (and can be ignored). But, for thin-walled sections, w_{s} can become important (worse for composites since $G_{x z} \ll E_{x}$)

In addition to "bending" and "shearing", the section may also twist through an angle α

Figure 14.18 Representation of twisting of beam cross-section

However, there exists a Shear Center for every section. If the load is applied at the shear center, the section translates but does not twist.
(Note: shear center not necessarily center of gravity or centroid)

Figure 14.19 Representation of some beam cross-sections with various locations of center of gravity and shear center

C.G = S.C.

- center of gravity x shear center

If this condition is not met, then generally bending and twisting will couple. But there is a class of cross-sections (thin-walled) where bending and shearing/torsion can be decoupled. Will pursue this next.

Wrap-up discussion by considering examples of common cross-sections with principal axes aligned such that $\mathrm{I}_{\mathrm{yz}}=0 \quad$ (see Handout \#4a)

These are in contrast to common cross-sections not principal axes ($\mathrm{I}_{\mathrm{yz}} \neq 0$)

Figure 14.19 Some cross-sections generally not in principal axes

Angle

Wing Section

--> Finally

What are the limitations to the Engineering Beam Theory as developed?

- Shear deflections small (can get first order cut at this)
- No twisting (load along shear center) -- otherwise torsion and bending couple
- Deflections small
o - No moment due to axial load (P_{w})
o - Angles small such that $\sin \phi \approx \phi$
- --> will consider next order effect when discuss buckling and postbuckling
- --> consideration will stiffen (membrane effect) structure
- Did not consider $\varepsilon_{z z}$ (Poisson's effect)

