Unit 13 Review of Simple Beam Theory

Readings:

Review Unified Engineering notes on Beam Theory

BMP	$3.8,3.9,3.10$
T \& G	$120-125$

Paul A. Lagace, Ph.D.
Professor of Aeronautics \& Astronautics and Engineering Systems

IV. General Beam Theory

We have thus far looked at:

- in-plane loads
- torsional loads

In addition, structures can carry loads by bending. The 2-D case is a plate, the simple 1-D case is a beam. Let's first review what you learned in Unified as Simple Beam Theory

(review of) Simple Beam Theory

A beam is a bar capable of carrying loads in bending. The loads are applied transverse to its longest dimension.

Assumptions:

1. Geometry

Figure 13.1 General Geometry of a Beam

a) long \& thin $\Rightarrow \ell \gg b$, h
b) loading is in z-direction
c) loading passes through "shear center" \Rightarrow no torsion/twist (we'll define this term later and relax this constraint.)
d) cross-section can vary along x
2. Stress state
a) $\sigma_{y y}, \sigma_{y z}, \sigma_{x y}=0 \Rightarrow$ no stress in y-direction
b) $\begin{gathered}\sigma_{x x} \gg \sigma_{z z} \\ \sigma_{x z} \gg \xi_{z z}\end{gathered} \Rightarrow$ only significant stresses are $\sigma_{x x}$ and $\sigma_{x z}$

Note: there is a load in the z-direction to cause these stresses, but generated $\sigma_{x x}$ is much larger (similar to pressurized cylinder example)
Why is this valid?
Look at moment arms:
Figure 13.2 Representation of force applied in beam

$\sigma_{x x}$ moment arm is order of (h)
$\sigma_{z z}$ moment arm is order of (ℓ)

$$
\begin{aligned}
& \text { and } \ell \gg h \\
& \Rightarrow \sigma_{x x} \gg \sigma_{z z} \text { for equilibrium }
\end{aligned}
$$

3. Deformation

Figure 13.3 Representation of deformation of cross-section of a beam

define: $\mathrm{w}=$ deflection of midplane (function of x only)
a) Assume plane sections remain plane and perpendicular to the midplane after deformation
"Bernouilli - Euler Hypothesis" ~ 1750
b) For small angles, this implies the following for deflections:

$$
u(x, y, z) \approx-z \phi \approx-z \frac{d w}{d x} \sim \begin{align*}
& (13-1) \tag{13-1}\\
& \left(\phi=\frac{d w}{d x}\right) \quad \begin{array}{l}
\text { total derivative } \\
\text { since it does not } \\
\text { vary with y or } \mathrm{z}
\end{array}
\end{align*}
$$

Figure 13.4 Representation of movement in x-direction of two points
 on same plane in beam
$\Rightarrow u=-z \sin \phi \quad$ Note direction of u relative to +x direction
and for ϕ small:

$$
\begin{align*}
& \Rightarrow \mathrm{u}=-\mathrm{z} \phi \\
& v(x, y, z) \\
&=0 \tag{13-2}\\
& w(x, y, z)
\end{align*}
$$

Now look at the strain-displacement equations:

$$
\begin{align*}
& \varepsilon_{x x}=\frac{\partial u}{\partial x}=-z \frac{d^{2} w}{d x^{2}} \tag{13-3}\\
& \varepsilon_{y y}=\frac{\partial v}{\partial y}=0 \\
& \varepsilon_{z z}=\frac{\partial w}{\partial z}=0 \quad \text { (no deformation through thickness) } \\
& \varepsilon_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0 \\
& \varepsilon_{y z}=\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}=0 \\
& \varepsilon_{x z}=\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}=-\frac{\partial w}{\partial x}+\frac{\partial w}{\partial x}=0
\end{align*}
$$

Now consider the stress-strain equations (for the time being consider isotropic...extend this to orthotropic later)

$$
\begin{aligned}
& \varepsilon_{x x}=\frac{\sigma_{x x}}{E} \\
& \varepsilon_{y y}=-\frac{v \sigma_{x x}}{E}<- \text { small inconsistency with previous } \\
& \varepsilon_{z z}=-\frac{v \sigma_{x x}}{E}<- \text { small inconsistency with previous } \\
& \varepsilon_{x y}=\frac{2(1+v)}{E} \sigma_{x y}=0 \\
& \varepsilon_{y z}=\frac{2(1+v)}{E} \sigma_{y z}=0 \\
& \varepsilon_{z x}=\frac{2(1+v)}{E} \sigma_{z x}<-- \text { inconsistency again! }
\end{aligned}
$$

We get around these inconsistencies by saying that $\varepsilon_{y y}, \varepsilon_{z z}, \varepsilon_{x z}$ are very small but not quite zero. This is an approximation. We will evaluate these later on.
4. Equilibrium Equations

Assumptions:

a) no body forces
b) equilibrium in y-direction is "ignored"
c) x, z equilibrium are satisfied in an average sense

So:

$$
\begin{align*}
& \frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x z}}{\partial z}=0 \\
& 0=0 \quad(13-5) \\
& \frac{\partial \sigma_{x z}}{\partial x}+\frac{\partial \sigma_{z z}}{\partial z}=0 \quad(13-6) \tag{13-6}
\end{align*}
$$

Note, average equilibrium equations:

$$
\begin{align*}
& \iint_{\text {face }}[\text { Eq. }(13-6)] d y d z \Rightarrow \frac{d S}{d x}=p \\
& \iint_{\text {face }} z[\text { Eq. }(13-5)] d y d z \Rightarrow \frac{d M}{d x}=S \tag{13-5a}
\end{align*}
$$

These are the Moment, Shear, Loading relations where the stress resultants are:

$$
\begin{align*}
& F=\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x x} b d z \\
& S=-\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{x z} b d z \tag{13-8}
\end{align*}
$$

Figure 13.8 Representation of Moment, Shear and Loading on a beam

(F, S, M found from statics)

So the final important equations of Simple Beam Theory are:

$$
\begin{align*}
& \varepsilon_{x x}=-z \frac{d^{2} w}{d x^{2}}=\frac{\partial u}{\partial x} \tag{13-3}\\
& \varepsilon_{x x}=\frac{\sigma_{x x}}{E} \tag{13-4}\\
& \frac{d S}{d x}=p \tag{13-6a}\\
& \frac{d M}{d x}=S \tag{13-5a}
\end{align*}
$$

--> How do these change if the material is orthotropic?
We have assumed that the properties along x dominate and have ignored $\varepsilon_{y y}$, etc.
Thus, use E_{L} in the above equations.
But, approximation may not be as good since $\varepsilon_{y y}, \varepsilon_{z z}, \varepsilon_{x z}$ may be large and really not close enough to zero to be assumed approximately equal to zero

Solution of Equations
using (13-3) and (13-4) we get:

$$
\begin{equation*}
\sigma_{x x}=E \varepsilon_{x x}=-E z \frac{d^{2} w}{d x^{2}} \tag{13-10}
\end{equation*}
$$

Now use this in the expression for the axial force of equation (13-7):

$$
\begin{aligned}
F & =-E \frac{d^{2} w}{d x^{2}} \int_{-\frac{h}{2}}^{\frac{h}{2}} z b d z \\
& \left.=-E \frac{d^{2} w}{d x^{2}} \frac{z^{2}}{2} b\right]_{-\frac{h}{2}}^{\frac{h}{2}}=0
\end{aligned}
$$

No axial force in beam theory
(Note: something that carries axial and bending forces is known as a beam-column)
Now place the stress expression (13-10) into the moment equation (13-9):

$$
M=E \frac{d^{2} w}{d x^{2}} \int_{-\frac{h}{2}}^{\frac{h}{2}} z^{2} b d z
$$

$$
\text { definition: } \quad I=\int_{-\frac{h}{2}}^{\frac{h}{2}} z^{2} b d z \quad \begin{aligned}
& \text { moment of inertia of } \\
& \text { cross-section }
\end{aligned}
$$

for rectangular cross-section:

$$
I=\frac{b h^{3}}{12} \quad\left[\text { length }^{4}\right]
$$

Thus:

$$
\begin{equation*}
M=E I \frac{d^{2} w}{d x^{2}} \tag{13-11}
\end{equation*}
$$

"Moment - Curvature Relation"
--> Now place equation (13-11) into equation (13-10) to arrive at:

$$
\begin{align*}
\sigma_{x x}=-E z \frac{M}{E I} & \\
& \Rightarrow \sigma_{x x}=-\frac{M z}{I} \tag{13-12}
\end{align*}
$$

Finally, we can get an expression for the shear stress by using equation (13-5):

$$
\begin{equation*}
\frac{\partial \sigma_{x z}}{\partial z}=-\frac{\partial \sigma_{x x}}{\partial x} \tag{13-5}
\end{equation*}
$$

Multiply this by b and integrate from z to $\mathrm{h} / 2$ to get:

$$
\left.\begin{array}{l}
\int_{z}^{\frac{h}{2}} b \frac{\partial \sigma_{x z}}{\partial z} d z=-\int_{z}^{\frac{h}{2}} \frac{\partial \sigma_{x x}}{\partial x} b d z \\
\Rightarrow b[\underbrace{\sigma_{x z}(h / 2)}_{\underbrace{}_{\uparrow}}-\sigma_{x z}(z)]=-\int_{z}^{\frac{h}{2}} \underbrace{\frac{\partial}{\partial x}\left(-\frac{M z}{I}\right)} b d z \\
\text { (from boundary condition } \\
\text { of no stress on top surface) }
\end{array}=-\frac{z}{I} \frac{d M}{d x}\right)
$$

$$
(13-13)
$$

This all gives:

$$
\Rightarrow \sigma_{x z}=-\frac{S Q}{I b}
$$

where:

$$
Q=\int_{z}^{\frac{h}{2}} z b d z \quad=\text { Moment of the area above the center }
$$

$$
\text { function of } z-\text { - maximum occurs at } z=0
$$

Summarizing:

$$
\begin{aligned}
& \frac{d S}{d x}=p \\
& \frac{d M}{d x}=S \\
& \sigma_{x x}=-\frac{M z}{I} \\
& \sigma_{x z}=-\frac{S Q}{I b} \\
& M=E I \frac{d^{2} w}{d x^{2}}
\end{aligned}
$$

Notes:

- $\sigma_{x x}$ is linear through thickness and zero at midpoint
- $\sigma_{x z}$ has parabolic distribution through thickness with maximum at midpoint
- Usually $\sigma_{x x} \gg \sigma_{z z}$

Solution Procedure

1. Draw free body diagram
2. Calculate reactions
3. Obtain shear via (13-6a) and then $\sigma_{x z}$ via (13-13)
4. Obtain moment via (13-5a) and then $\sigma_{x x}$ via (13-12) and deflection via (13-11)

NOTE: steps 2 through 4 must be solved simultaneously if loading is indeterminate
Notes:

- Same formulation for orthotropic material except
$>$ Use E_{L}
$>$ Assumptions on $\varepsilon_{\alpha \beta}$ may get worse
- Can also be solved via stress function approach
- For beams with discontinuities, can solve in each section separately and join (match boundary conditions)
Figure 13.6 Example of solution approach for beam with discontinuity

--> Subject to Boundary Conditions:
@ $\mathrm{x}=0, \mathrm{w}=\mathrm{w}_{\mathrm{A}}=0$
$@ x=x_{1}, \quad\left\{\begin{array}{l}w_{A}=w_{B} \\ \frac{d w_{A}}{d x}=\frac{d w_{B}}{d x}\end{array}\right\} \begin{aligned} & \text { displacements and } \\ & \text { slopes } \underline{\text { match }}\end{aligned}$
$@ \mathrm{x}=\ell, \mathrm{w}=\mathrm{w}_{\mathrm{B}}=0$

